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Abstract Analysis of limit-cycles in relay feedback sys-

tems is usually performed in continuous time, even though

most such systems are implemented digitally. In this

paper we discuss the limitations of the continuous time

analysis, showing that even for standard plants with

reasonable sampling rates its results can be consider-

ably far from the truth. Then we present a discrete time

analysis of relay feedback systems, providing analytical

tools that overcome the limitations of their continuous

time counterparts.

1 Introduction

Analysis of relay feedback systems is a classical topic in

control systems theory, and prediction of the modes of

self-oscillation - that is, the limit-cycles - is the central

issue in this analysis [17][19]. Early work on analysis

of limit-cycles in relay feedback systems in the context

of control theory dates back to the 1950’s [6][12][15].

From the works of that time, the continuous-time de-

scribing function analysis emerged as the standard tool

for analysis of limit-cycles in nonlinear systems, due to

its simplicity and graphical appeal.

New interest in relay feedback arose in the 1980’s

motivated by the idea of using relays for tuning PI and
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PID controllers [1][9]. A whole family of tuning meth-

ods have been developed, whose application has be-

come widespread in industrial practice for the tuning of

single-loop controllers, and similar methods for the tun-

ing of multivariable controllers have also been proposed

[5][8]. This created a need for better understanding of

the behaviour of relay feedback systems, and a more

precise description of the limit-cycles than the one pro-

vided by the approximate describing function analysis.

State space analysis has provided these more precise an-

alytical tools for the prediction of limit-cycles and also

a more complete understanding of other phenomena oc-

curring in relay feedback systems [11][18]. The interest

in developing new tuning methods based on relay exper-

iments continues to this day - see for instance the tuning

rules for resonant controllers presented in [16] and the

ones for event-based controllers in [4]. All these tuning

methods (the now classical methods from the 1980’s as

well as the newly developed) rely on a correct theoret-

ical prediction of the limit-cycles to be observed in an

actual relay feedback experiment for the derivation of

their tuning formulas. Accordingly, analytical tools for

better describing the relay feedback systems continue

to appear [10][7].

Even though the relay feedback systems are mostly

implemented digitally, their analysis is usually performed

in continuous time, neglecting the sampled-data char-

acteristic of the system. This analysis relies on the sam-

pling rates being fast enough for its results to be correct.

Several of the early works on relay feedback systems

did not ignore the sampling issue in the analysis, ei-

ther dealing explicitly with the sampled-data nature of

the implementation [6] or even performing the analysis

strictly in discrete-time [15]. Yet, continuous-time anal-

ysis has become the standard in nonlinear systems in

general, relay feedback systems not being an exception,

and these early discrete-time results did not seem to

have developed into a complete and contemporary the-

ory, contrary to the continuous-time analysis. We will

show by means of a quite standard case study that the

period and amplitude of oscillation in a sampled-data

relay feedback system can be significantly distant from

the ones predicted by the continuous time analysis even

for seemingly appropriate sampling rates. Tuning a con-

troller based on the information collected from such an

experiment could thus result in poor tuning. In this

paper, sampled relay feedback systems are analysed in

the discrete time domain in order to obtain more precise

descriptions of their limit-cycles.

The paper is organized as follows. The formal def-

inition of the problem under study is given in Section

2 and continuous time analysis tools are presented in

Section 3. These tools are applied to a standard case
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study, and it is shown in Section 4 that the periods and

amplitudes observed in the actual sampled data sys-

tem can be significantly far from the ones predicted,

even for sampling rates within the range that control

textbooks recommend for this plant. Then we develop,

in Section 5, the discrete-time analysis of limit-cycles.

Two exact methods are derived, one in the time do-

main, using the state space representation of the plant,

and another one in the frequency domain. An approxi-

mate method is also derived from the frequency domain

approach. It is shown by comparison of these analytical

tools with their continuous-time counterparts that more

limit-cycles are to be expected in the sampled-data sys-

tem than in the original continuous-time system. These

tools are then applied to the case study, showing that

they predict all limit-cycles correctly, overcoming the

limitations of the continuous-time analysis.

2 Preliminaries

2.1 Definitions and Notation

We consider linear time-invariant SISO systems in con-

tinuous time, which can be described by an input-output

relationship

Y (s)

U(s)
= G(s) (1)

where Y (s), U(s) and G(s) are the Laplace transforms

of the system’s output, input and impulse response, re-

spectively. It is assumed that the transfer function G(s)

is rational and strictly proper.1 We will also consider

minimal state space realizations of (1):

ẋ(t) = Ax(t) +Bu(t) (2)

y(t) = Cx(t) (3)

with G(s) = C(sI − A)−1B, (A,B) controllable and

(C,A) observable.

When the input and output of the continuous-time

system (1) are sampled with a zero-order-holder, the

resulting discrete-time system can be described by the

input-output relationship:

Y (z)

U(z)
= G(z) (4)

where Y (z) and U(z) are the Z transforms of the sys-

tem’s output and input, respectively, and G(z) = (1 −
z−1)Z{L−1[G(s)

s ]}. A minimal realization of the discrete-

time system (4) can be written as:

x(k + 1) = Φx(k) + Ψu(k) (5)

y(k) = Cx(k) (6)

1 So that its feedback connection with a static element is
well-posed.

Fig. 1 Feedback connection of continuous time plant and
nonlinear element

with G(z) = C(zI − Φ)−1Ψ . We assume that the sam-

pling rate is such that the controllability and observ-

ability properties of the continuous time system are not

lost, thus (Φ, Ψ) is controllable and (C,Φ) is observable.

Moreover, the realizations (5) and (2) are related by:

Φ = eATs (7)

Ψ =

∫ Ts

0

eAtdtB (8)

where Ts is the sampling period. For convenience of

notation, we will write (8) as

Ψ = A−1(Φ− I)B (9)

but it must be noted that the discrete-time input matrix

Ψ is well-defined even if A does not have an inverse [18].

2.2 The feedback connection

We consider feedback nonlinear systems in the form de-

picted in Figure 1. This feedback system consists of

a linear time-invariant system connected in feedback

with a time-invariant and memoryless nonlinear ele-

ment. Since the transfer function of the linear system

has been assumed to be strictly proper, the feedback

connection is well-posed. The linear system is described

by (1) and (2), whereas the nonlinear element is de-

scribed by

u = −φ(y) (10)

where φ(·) : R → R is an odd function, that is, φ(y) =

−φ(−y) ∀y ∈ R.

This is the standard setting in the study of exis-

tence and characterisation of limit-cycles in nonlinear

systems, and ample theory on the subject is available -

see [13], for instance. Before we proceed, let us formalize

the subject of our study: the limit-cycle.

Definition 1 A limit-cycle is an isolated periodic or-

bit γ of an autonomous nonlinear system. If for all x ∈ γ
the reciprocal state −x also belongs to γ, then the limit-

cycle is said to be symmetric. A limit-cycle is said to

be unimodal if the linear system’s output y(t) changes

signal exactly twice per period. For a symmetric and

unimodal limit-cycle the acronym SULC will be used.
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�

2.3 Relay feedback and the ultimate point

A very important particular case of the feedback ele-

ment φ(·) is the so-called relay feedback:

u(t) = −sign(y(t)). (11)

where sign(·) is the sign function (sign(x) = 1 for posi-

tive x and sign(x) = −1 for negative x). Relay feedback

with different amplitudes, that is u(t) = −d.sign(y(t))

with d ∈ R+, can be easily accommodated by multi-

plying the transfer function by d. Accordingly, we will

assume d = 1 in our analysis, with no loss of generality.

Relay feedback systems arise in a wide variety of

engineering applications, like failure diagnosis and con-

troller tuning, for instance, as well as in nature, which

motivates their study in biology. In the control systems

framework, relay feedback experiments are mostly used

as a means to identify the ultimate quantities of an

unknown plant, an information that feeds tuning for-

mulas por PID (Proportional-Integral-Derivative) and

PR (Proportional-Resonant) controllers. The ultimate

quantities are the characteristics of the so-called ulti-

mate point of the frequency response of a linear system,

which is the point at which the frequency response’s

phase reaches −π. These are the ultimate frequency ωu
and the ultimate gain Ku, which are defined as

ωu = min
ω≥0

ω : ∠G(ω) = −π

Ku =
1

| G(ωu) |
.

Once a symmetric oscillation is obtained in the relay

experiment, its amplitude Au and period Tu are mea-

sured and the ultimate quantities are calculated from

[1]

Ku =
4

πAu
ωu =

2π

Tu
(12)

The standard tool for analysis of limit-cycles is the

describing function method, which is ubiquitous in con-

trol systems textbooks, even at the undergraduate level.

The describing function method provides an approxi-

mate solution to the problem. In relay feedback systems

it is also possible to perform an exact analysis in the

time-domain, which will be reviewed in Section 3. We

will also present an alternative exact method for the

analysis of limit-cycles that is based in the frequency-

domain, of which the describing function result for relay

feedback systems can be seen as an approximation.

Fig. 2 Feedback connection of discrete-time (sampled con-
tinuous time) plant and nonlinear element

2.4 Sampled-data relay feedback

The purpose of this paper is to investigate the behaviour

of the sampled version of this feedback connection, that

is, systems in the form depicted in Figure 2. In this sys-

tem, the input and output of the linear continuous time

plant have been sampled with a sampling rate Ts, and

the feedback connection is otherwise unaltered with re-

spect to the feedback connection described in Figure

1. Clearly, for fast enough sampling rates the contin-

uous time theory should apply, but we will show by

means of a simple example that the effect of sampling

can be quite significant and not only quantitative but

also qualitative in nature, even for seemingly appropri-

ate sampling rates. Then we will develop analysis tools

in the discrete time domain that will allow the removal

of these limitations of the continuous time analysis and

provide more precise descriptions of the limit cycles in

these sampled data relay feedback systems. But first let

us review the known tools for analysis of the continuous

time system in Figure 1 and present an alternative one

that will also prove itself useful.

3 Continuous time analysis

In this Section the behaviour of the continuous-time

feedback connection (1)(11) (equivalently, (2)(3)(11))

is analyzed. Let us define the switching surface S as

S = {x : Cx = 0}. (13)

Whenever the state of the system crosses the switch-

ing surface S, the relay output changes signal and we

say that a switching has occurred. The switching plane

divides the state space into two subspaces X+ and X−:

X+ = {x : Cx > 0} (14)

X− = {x : Cx < 0} (15)

At either subspace the system behaves linearly, that

is, it obeys the following equations:

ẋ = Ax−B ∀x ∈ X+ (16)

ẋ = Ax +B ∀x ∈ X− (17)
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3.1 Equilibria

Within the subspace X+ the state evolution obeys equa-

tion (16), which presents an equilibrium point at xe+ =

A−1B. If A is Hurwitz, then any trajectory starting

inside X+ will tend toward xe+. Assume that xe+ be-

longs to X−; this implies that a switching will occur,

after which the system behaves according to equation

(17). But the equilibrium of this last equation is −xe+ ∈
X+, thus another switching will occur as the trajec-

tory tends to this new equilibrium, and so on. Hence,

xe+ = A−1B ∈ X− is a sufficient condition for the tra-

jectories of the relay feedback system to switch indef-

initely. Now note that Cxe+ = CA−1B = −G(0) and

thus xe+ ∈ X− can be read as G(0) > 0. Therefore,

positive static gain is a sufficient condition for a BIBO

system with relay feedback (11) to present an infinite

number of switches and never reach an equilibrium, as

formally stated in the following theorem [18].

Theorem 1 If G(0) > 0 then the nonlinear system

(1)(11) does not have equilibria and any trajectory start-

ing away from x = 0 results in an infinite number of

switches.

�

Note that this does not imply that there is a limit-

cycle, since nothing has been said about these switches

being periodical. Analysis of limit-cycles starts in the

following Subsection.

3.2 Time domain analysis of SULCs

The material in this Subsection summarizes the results

of [18]. Assume that there exists a SULC with half-

period h. Let x∗ and x∗∗ be the two switching points.

Then

x∗∗ = eAhx∗ +

∫ h

0

eA(t−h)dtB (18)

x∗ = eAhx∗∗ −
∫ h

0

eA(t−h)dtB (19)

Substituting (18) into (19) gives2

x∗ = (I + eAh)−1A−1(eAh − I)B (20)

Because the assumed limit-cycle is symmetric, x∗ =

−x∗∗, that is, the oscillation must be symmetric around

the origin. We shall call x∗ given by (20) the switching

2 Again, for convenience of notation we will write∫ h
0
eA(t−h)dt = −A−1(eAh − I), which does not imply assum-

ing invertibility of A

point. The switching point must belong to the Kernel

of the output matrix, that is

Cx∗ = C(I + eAh)−1A−1(eAh − I)B = 0 (21)

Solving equation (21) for h gives the exact values

of the half-periods of possible oscillations. A solution

h∗ of (21) is the half-period of a SULC IFF we can

guarantee that there are no other switchings within this

half-period, that is, IFF

y(t) |x(0)=x∗> 0 ∀t ∈ (0, h∗) (22)

We formalize these results in a theorem [11][18].

Theorem 2 The relay feedback system defined in (1)(11)

presents a SULC with period T = 2h∗ if and only if h∗

satisfies equations (21) and (22).

�

The existence of a SULC can be established by solv-

ing numerically equation (21) and then verifying, through

the simulation of the system, if (22) is satisfied.

3.3 Frequency response analysis of SULCs

Let us now derive new frequency domain conditions for

the existence of SULCs. If a symmetric unimodal limit-

cycle with period T = 2h is observed in a relay feedback

system, then the linear system’s input is a square wave

with period T . Taking as the time reference an instant

at which the square wave switches up - that is, from −1

to +1 - then this square wave is described by

u(t) = +1 t ∈ (mT, h+mT )

u(t) = −1 t ∈ (h+mT, T +mT )

(23)

for all m ∈ Z. The expansion of the square wave (23)

in Fourier series yields:

u(t) =

∞∑
n=−∞

cne
nω0t (24)

where ω0 = 2π
T is the fundamental frequency and the

coefficients of the Fourier series are given by:[14]

cn = − 2

πn
n odd cn = 0 n even. (25)

The input of the plant is the output of the relay,

which switches up when its input changes signal from

positive to negative. But the relay’s input is the plant’s

output, so u(t) will be given by (23) if and only if the
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plant’s output changes signal at the same time instants

and in the opposite direction, that is,

y(0) = 0

y(k) < 0 t ∈ (0, h)

y(k) > 0 t ∈ (h, T )

y(k) < 0 t ∈ (T, T + h)

and so on. The output of the linear plant must satisfy

these equations, crossing zero at exactly the time in-

stants t = 0, π/ω0, 2π/ω0, . . ., for the square wave (23)

to exist in the feedback loop. But if the input of the

plant is the square wave (23) then its output is given

by:

y(t) =

∞∑
n=−∞

ane
nω0t (26)

where

an = G(nω0)cn = 
4

πn
G(nω0) (27)

Evaluating (26) at t = 0 gives

y(0) =

∞∑
n=−∞

an = a0 + 2

∞∑
n=1

Re(an) (28)

where Re(·) indicates the real part of a complex number

and the last equality comes from the fact that an = a∗n
- the Fourier series symmetry for real signals. On the

other hand, a0 = 0 because c0 = 0; putting this and

(27) into (28) gives

y(0) = 2

∞∑
n=1

4

πn
Re(G(nω0)) = 0

or just
∞∑
n=1

1

n
Im(G(nω0)) = 0 (29)

where Im(·) stands for the imaginary part of a com-

plex number. This is an equation that the fundamental

frequency ω0 must satisfy as a requirement for the exis-

tence of a limit-cycle with period T = 2π
ω0

. On the other

hand, the limit-cycle, if it exists, is symmetric, as shown

below:

y(t+ h) =

∞∑
n=−∞

ane
nω0(t+h)

=

∞∑
n=−∞

ane
nω0tenω0h

=

∞∑
n=−∞

ane
nω0ten2πh/T

=

∞∑
n=−∞

ane
nω0tenπ

= −y(t) ∀t

because enπ = −1 for odd values of n, and all terms

corresponding to even values of n are zero; this also

implies that if y(0) = 0 then y(h) = 0. Hence, condi-

tion (29) implying that the output of the plant changes

signal at t = 0, thus matching the first switching as-

sumed for the square wave (23), also implies that all

assumed switching times of the square wave are also

matched by signal changes of the plant’s output. But

for the square wave to exist, there must be no addi-

tional signal changes of the plant’s output, so one must

have

y(t) =

∞∑
n=−∞


4

πn
G(nω0)enω0t < 0 ∀t ∈ (0, π/ω0)(30)

With this we have proven the following result, which

is instrumental in determining the existence of SULCs.

Theorem 3 The relay feedback system defined in (1)(11)

presents a SULC with period T = 2π
ω0

if and only if ω0

satisfies equations (29) and (30).

�

Clearly a necessary condition for the satisfaction of

(29) is that the imaginary part of the frequency re-

sponse must change sign as ω goes from 0 to ∞; if all

terms of the sum have the same sign they can not add

up to zero. This leads to the following corollary of The-

orem 3.

Corollary 1 If the imaginary part of the frequency re-

sponse does not change sign, that is:

Im(G(ω1))Im(G(ω2)) ≥ 0 ∀ω1, ω2 > 0 (31)

then there is no SULC in the relay feedback system

(1)(11).

�

This condition excludes, among other classes of plants,

those that are stable and minimum-phase with order

smaller than three.

4 Motivational example

We have just presented continuous-time tools for the

analysis of relay feedback systems. Let us illustrate the

typical performance of these analysis tools in the pres-

ence of sampling by means of an example. Consider a

plant whose transfer function is

G(s) =
1

(s+ 1)(2s+ 1)(10s+ 1)
. (32)
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The analysis tools seen in Section 3 have been ap-

plied to this system. Application of Theorem 2 requires

picking a minimal realization of the transfer function

(32) and then finding the solutions of equation (21). We

have chosen the canonical controllable realization and

we have solved (21) numerically with MatLab, finding

the unique solution h = 3.975 s, which was then ver-

ified to satisfy equation (22). Therefore, one and only

one SULC with period T = 7.950 s is predicted. The

corresponding amplitude of the output can also be pre-

dicted, by simulating the plant with the initial condition

x(0) = x∗, which yields ymax = 0.066.

In order to apply the frequency response analysis in

Theorem 3, the series (29) must be approximated by a

finite sum, and the result will naturally depend on the

number of terms kept in this approximation. Taking the

first ten terms (that is, n = 1, 3, . . . , 19) leads to the

same four significant digits as the exact time domain

analysis, and only three terms (n = 1, 3, 5) are required

to obtain three correct significant digits. Recall that de-

scribing function analysis is, in a sense, a particular case

of our analysis, which is equivalent to taking only the

first harmonic approximation in (29). In this example,

which is particularly well-behaved, describing function

analysis predicts a SULC with half-period h = 3.897 s,

a difference of only 2% with respect to the exact value.

Now suppose this relay feedback experiment is im-

plemented digitally, as in Figure 2. If the sampling rate

is high enough then the prediction done by continuous

time analysis should provide sufficiently accurate re-

sults. Indeed, simulating the sampled-data system in

SIMULINK with a sampling period Ts = 0.001 s a

SULC is observed with the predicted values of period

and amplitude with three coincident significant digits.

For larger sampling periods one can expect that the be-

haviour of the sampled-data will be considerably differ-

ent, and indeed it differs considerably even at sensible

sampling rates. For Ts = 0.1 s, for instance, the period

and amplitude of the limit-cycle observed in simulation

are somewhat different from the ones predicted, and de-

pend on the initial condition: a period h = 4.2 s with

amplitude ymax = 0.074 is observed for some initial

conditions, whereas for other initial conditions values

much closer to the ones predicted are observed.

For Ts = 1 s quite significant differences arise, with

an amplitude ymax = 0.148 being observed for some

initial conditions. As a matter of fact three different

SULCs can be observed in simulation, depending on

the initial conditions. The plant’s output for each one

of these SULCs is plotted in Figure 3, along with the

output of the plant for the continuous time (that is, not

sampled) SULC.

Tuning rules for PID controllers are usually such

that the proportional gain is inversely proportional to

the amplitude of the oscillation, whereas the integral

time and the derivative time are proportional to the

period [1]. So, tuning a PID based on the results of an

experiment such as the one just presented could result

in any one of three very different settings, depending on

which SULC is observed, which in its turn is not some-

thing under the designer’s control. Only one of these

settings (the one resulting from the amplitude and pe-

riod closer to the ones predicted by the continuous time)

would be close to the one recommended by the theory,

and there is no reason to believe that the other settings

would be appropriate.

Note that these sampling periods are well within

the range usually recommended for this plant in con-

trol systems. Indeed, even Ts = 1 s gives forty samples

within the plant’s rising time, compared to ten samples

per rising time usually recommended in textbooks [2].

Also, the corresponding Nyquist frequency is given by

ωN
∆
= π/Ts = π rad/s, which is much above the plant’s

bandwidth, since | G(ωN ) |= 0.0015. So, even for rea-

sonable sampling rates, the effect of the sampler must

be taken into account in the analysis. In this paper we

provide a discrete-time analysis of limit-cycles that will

provide more precise results.

5 Discrete time analysis

In this Section the behaviour of the sampled feedback

connection (4)(11) (equivalently, (5)(6)(11)) is analyzed

in the discrete-time domain, reviewing and expanding

the analysis presented in [3].

5.1 Exact time domain analysis

Assume that there is a symmetric unimodal oscillation

with period N = 2M , with integer M , and recall the

definitions of switching surface and of the half-spaces

in (13), (14) and (15). Because of sampling, the relay

will not switch when the state crosses the switching

surface S, but only at the first sample after S has been

crossed. Accordingly, let x∗ be the state at which this

switching occurs, which corresponds to the first sample

reached by the limit-cycle after crossing S from X− to

X+. Then, starting from the initial condition x0 = x∗,

the system behaves according to:

xi+1 = Φxi − Ψ x0 = x∗. (33)
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(a) Continuous time - T = 7.95 s
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(d) Sampled - T = 12 s

Fig. 3 Time response of the relay feedback system: contin-
uous time in (a); sampled with Ts = 1 s for different initial
conditions in (b), (c) and (d)

The solution of the dynamic equation (33) is 3

xi = Φix∗ −
i−1∑
j=0

ΦjΨ

= Φix∗ − (Φ− I)−1(Φi − I)Ψ (34)

3 Once more, the matrix inversion is there only for conve-
nience of notation

Because the oscillation is symmetric, xM = −x∗

and thus

xM = −x∗ = ΦMx∗ − (Φ− I)−1(ΦM − I)Ψ (35)

Isolating x∗ in (35) yields:

x∗ = (ΦM + I)−1(ΦM − I)(Φ− I)−1Ψ (36)

So, if there is a SULC with period 2M then it must

pass through x∗ given in (36) and through the states

given by (34) for i = 1, 2, . . . ,M−1; moreover, all these

points xi must be on the same side of the switching

surface, that is, Cxi > 0, i = 0, 1, . . . ,M − 1. On the

other hand if these conditions are satisfied, then the

corresponding trajectory is a SULC by definition. With

this we have proven the following result.

Theorem 4 Let x∗ be given by (36) and xi by (34);

also let M be and integer and x0 = x∗. There exists a

SULC with period 2M in the system (4) - (11) if and

only if

Cxi > 0 i = 0, 1, . . . ,M − 1. (37)

�

From Theorem 4 one can conceive an algorithm to

search for all limit-cycles in a given relay feedback sys-

tem.

Algorithm

For M = 1, . . . , M̄

1. set L = 1

2. calculate x∗ from (36)
3. For i = 1, . . . ,M − 1

(a) calculate xi from (34)

(b) if Cxi < 0 then L = 0

4. if L = 1 then there is a SULC with period N = 2M

else there is no SULC with period N = 2M

5.2 Relating to the continuous-time

Let us compare the conditions just obtained with their

continuous-time counterparts, presented in subsection

3.2. The switching state in discrete-time is given in (36)

which, after substitution of (7)(9) yields:

x∗ = (ΦM + I)−1(ΦM − I)(Φ− I)−1Ψ

= (eAMTs + I)−1(eAMTs − I)A−1B (38)

This is the same expression as (20), which describes

the switching state in the continuous-time case, with

h replaced by MTs. So, the switching state in a given
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SULC is given by the same expression whether the sys-

tem is sampled or not. But this does not imply an equiv-

alence between the two situations, as the existence of

a SULC requires the switching state to satisfy different

conditions in each setting. In the continuous-time case

the switching state must belong to the switching sur-

face, whereas in the discrete-time case it only has to be

“close” to it. More specifically, some convex combina-

tion x̄ of the switching state and the previous system’s

state must belong to the switching surface, that is:

Cx̄ = C[λx∗(h) + (1− λ)Φ−1x∗(h)]

= C[λI + (1− λ)Φ−1]x∗(h)

= C[λ(I − Φ−1) + Φ−1]x∗(h) = 0 (39)

for some λ ∈ [0, 1]. So, existence of a SULC with pe-

riod h in the continuous time case requires that h is a

positive real number satisfying (39) for λ = 1. In the

discrete-time case, existence of a SULC with period h

requires that h satisfies (39) for any λ ∈ (0, 1), but this

h must be an integer multiple of Ts. As a consequence

of the fact that the switching state is less constrained, a

SULC present in continuous time typically turns, when

the system is sampled, into several SULCs with “neigh-

bour” periods, as seen in the case study in Section 4.

5.3 Exact frequency domain analysis

If a symmetric unimodal limit-cycle with period N =

2M is observed in the discrete-time relay feedback sys-

tem (4)(11), then the linear system’s input is a square

wave with period N . If we take an instant at which the

square wave switches up - that is, from −1 to +1 - as

the time reference, then this square wave is described

by:

u(k) = +1 k = 1 +mN, 2 +mN, . . . ,M +mN

u(k) = −1 k = M + 1 +mN, . . . , N +mN

(40)

for all m ∈ Z. The expansion of the square wave (40)

in Fourier series yields:

u(k) =
1

N

N∑
n=1

cne
nΩ0k (41)

where Ω0 = 2π
N and the coefficients cn are given by

cn =
2 e−πn/N

sin( πN n)
(42)

for odd values of n and cn = 0 otherwise - the DC

component is zero, as well as all even harmonics. 4

4 This expression is deduced in the Appendix.

The input of the plant is the output of the relay,

which switches up when its input changes signal from

positive to negative. But the relay’s input is the plant’s

output, so u(k) will be given by (40) if and only if the

plant’s output changes signal at the same time instants

and in the opposite direction, that is,

y(0) > 0

y(k) < 0 k = 1, . . . ,M

y(k) > 0 k = M + 1, . . . , N

y(k) < 0 k = N + 1, . . . , N +M

and so on. If the input of the plant is the square wave

(41), then its output is given by

y(k) =
1

N

N∑
n=1

G(enΩ0)cne
nΩ0k

=
2

N

N∑
n=1 odd

G(enΩ0)
e−πn/N

sin( πN n)
en2πk/N

=


M

2M∑
n=1 odd

G(enπ/M )
e−πn/2M

sin( π
2M n)

enπk/M

(43)

Let us note that the limit-cycle, if it exists, is sym-

metric, that is

y(k +M) =
2

N

N∑
n=1 odd

G(enΩ0)
e−πn/N

sin( πN n)
en2π(k+M)/N

=
2

N

N∑
n=1 odd

G(enΩ0)
e−πn/N

sin( πN n)
en2πk/Nenπ

= −2

N

N∑
n=1 odd

G(enΩ0)
e−πn/N

sin( πN n)
en2πk/N

= −y(k)

since enπ = −1 for odd values of n.

On the other hand, from the symmetry of the co-

efficients cn and of the transfer function G(enΩ0), we

can write

y(k) =

M∑
n=1 odd

2Re{ 
M
G(enπ/M )

e−πn/2M

sin( π
2M n)

enπk/M}

=
−2

M

M∑
n=1 odd

1

sin( π
2M n)

×

Im{G(enπ/M )e−πn(k−0.5)/M}
(44)

With this we have proven the following result.

Theorem 5 Let y(k) be given by (44). There exists a

SULC with period N = 2M if and only if M satisfies
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the following set of M + 1 inequalities:

y(0) > 0

y(k) < 0 k = 1, . . . ,M

(45)

�

The existence of SULCs in a given relay feedback

system can be verified by checking conditions (45) for

all values of M in a “reasonable” range, that is, up to

a large enough value.

5.4 First-order approximation

Insight is gained by looking at a first-harmonic approx-

imation of the output signal y(k), which is given by

y(k) ≈ −2

M

1

sin( π
2M )

Im{G(eπ/M )e−π(k−0.5)/M} (46)

which for k = 0 gives

y(0) ≈ −2

M

1

sin( π
2M )

Im{G(eπ/M )eπ/2M}

and for k = 1 gives

y(1) ≈ −2

M

1

sin( π
2M )

Im{G(eπ/M )e−π/2M}.

To satisfy the constraints that y(0) > 0 and y(1) < 0,

one must have

Im{G(eπ/M )eπ/2M} < 0

and

Im{G(eπ/M )e−π/2M} > 0

which implies that

arg(G(eπ/M )) ∈ (−π − π/2M,−π + π/2M), (47)

that is, the oscillation is at a frequency for which the

phase of the transfer function lies around −π, in an

interval of size −π/N . Thus, it is reasonable to use as an

approximation for the prediction of SULCs any period

M - equivalently Ω = π/M - for which the phase of the

plant’s frequency response arg(G(eΩ)) is close to −π,

in a similar way to the describing function approach for

continuous-time systems.

It is worth noting that the phase of a strictly proper

discrete-time transfer function always reaches −π for

some finite frequency. So, we conjecture that all sam-

pled transfer functions will satisfy condition (47) for

some M and thus exhibit at least one SULC.5 On the

5 Though we have not yet been able to prove it.

other hand, the condition in Corollary 1 excludes a

huge class of plants, showing that for these plants the

continuous-time analysis erroneously predicts that there

will be no SULCs. For example, it is quite easy to see

that a strictly proper first-order BIBO-stable G(s) does

not satisfy condition (31), but the corresponding G(z)

satisfies (47) with M = 1 for any sampling period and

thus the sampled relay feedback system with such a

G(s) does exhibit a SULC.

6 The motivational example revisited

Let us analyse the behaviour of the Example in Section

4 with the tools just developed. Recall that for Ts = 1 s

three different SULCs have been observed in simulation,

as shown in Figure 3, and that the continuous time

analysis was unable to predict this behaviour correctly.

For Ts = 1 s the sampled transfer function is given by:

G(z) = 10−3
5.671z2 + 15.45z + 2.55

z3 − 1.879z2 + 1.105z − 0.2019
(48)

and the corresponding sampled state space representa-

tion is:

Φ =

0.0845 −0.3058 −0.0224

0.4475 0.8004 −0.0149

0.2983 0.9247 0.9943


Ψ =

[
0.4475 0.2983 0.1134

]T
. (49)

Start with the first harmonic approximation given

by condition (47). The frequency response of the trans-

fer function (48) is presented in Figure 4, where the

frequencies corresponding to integer even periods are

highlighted. The phase intervals described in equation

(47) are also depicted in this plot, showing that (47) is

satisfied for several values of N , namely N = 8, N = 10

and N = 12; these are exactly the periods observed in

simulation. The amplitudes of each SULC can be esti-

mated by the amplitude in equation (46), which yields

A8 = 0.0679, A10 = 0.1054 and A12 = 0.1459 (AN
standing for the amplitude of the SULC with period

N). Thus, from the first harmonic approximate analy-

sis one can expect the occurrence of three SULCs with

the periods and amplitudes listed above, which is quite

close to what is observed in simulation. It turns out

that for this particular example the first harmonic ap-

proximation provides a good estimate, predicting all

the SULCs with the correct periods and with at least

two significant digits for the amplitudes. Given that the

first harmonic condition can be easily checked visually

with the aid of the plant’s frequency response, it is a

very convenient tool to be preferred whenever possible.

Now, let us apply the exact conditions of Theorem

5 to this case, with no approximations. To do this, con-

dition (45) must be checked for G(z) in (48) with all
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Fig. 4 Frequency response of (48); dots in the magnitude graph represent frequencies corresponding to integer even periods;
the ranges defined in equation (47) are shown in the phase graph; those frequencies for which the range includes −180o (in
red) correspond to the existing SULCs

positive integers M . We have checked these conditions

for allM ≤ 100, and they are satisfied for three different

values of M in this range: M = 4, M = 5 and M = 6,

confirming the findings of the first harmonic approxi-

mation. The predicted amplitudes are slightly different

and closer to the real values (those observed in simula-

tion): A8 = 0.0671, A10 = 0.1055 and A12 = 0.1480.

Finally, consider the application of Theorem 4 to

this example. Verifying (37) results once again in a pos-

itive answer for M = 4, M = 5 and M = 6 - that is

N = 8, N = 10 and N = 12. The corresponding values

of the switching state are given by

x∗8 =
[

0.2931 1.1174 0.0090
]T

x∗10 =
[

0.1398 1.3686 0.5129
]T

x∗12 =
[

0.0293 1.5053 1.2518
]T

and the amplitudes of the SULCs are the same as pre-

dicted by the exact frequency domain analysis.

Notice that the state space condition (37) is much

easier to verify than the frequency domain condition

(45). The complexity of checking (45) grows as M2,

since M inequalities must be checked and each one con-

sists of a sum with M terms. Whereas (37) consists of

M inequalities as well, but each one of the inequalities

has the same complexity for all M . For the current ex-

ample, which is of low order, checking all values of M

up to one thousand already takes several minutes in a

typical personal computer with the frequency response

approach, but only a few seconds with the state space

approach.

7 Conclusions

Continuous-time analysis of a relay feedback system is

not appropriate to predict the existence of SULCs and

their properties when the system is sampled. Relevant

differences in the period and amplitude appear even for

sampling rates that are quite fast with respect to the

plant’s time constant. A common phenomenon, which

we have illustrated by a very ordinary example, is that

several SULCs with significantly different periods and

amplitudes appear in the sampled system where the

continuous time analysis predicts only one.

We have given two exact methods to predict SULCs

in sampled relay feedback systems. One method is based

on the state space representation of the discrete time

system and is very similar to the state-space meth-

ods known for continuous time systems. Confronting
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the two state-space approaches also explains the ap-

pearance of extra SULCs in the sampled system. We

have also revisited frequency domain results from the

1960’s, presenting them under a more contemporary

light, which allows one to explore their application with

today’s computer methodologies, unavailable at the time

this theory has been developed. The application of these

methods to the example shows that they are easy to use

and predict exactly all the symmetric unimodal limit-

cycles in sampled relay feedback systems.

Among the many consequences of errors in predic-

tion of SULCs by the continuous time analysis, one is of

particular interest and appeal to the authors: Ziegler-

Nichols-like tuning based on the results of sampled re-

lay feedback experiments could fail. Hence, a matter

of current research is the adaptation of Ziegler-Nichols-

like tuning procedures and formulas to cope with this

situation, based on the analytical methods for predict-

ing SULCs in discrete-time systems presented in this

paper.

A Deduction of the Fourier series of the square

wave

The Fourier series is given by

cn =
N∑
k=1

u(k)e−nΩ0k

=
M∑
k=1

e−nπk/M −
N∑

k=M+1

e−nπk/M
∆
= W −X

Using the formula for the sum of the terms of a PG
∑

=

a1
1−qm
1−q where q is the ratio, m is the number of terms and

a1 is the first term, the first summation is equal to:

W =
M∑
k=1

e−nπk/M = e−nπ/M
1 − (e−nπ/M )M

1 − e−nπ/M

Multiply the numerator and the denominator by e+nπ/2M

to get rid of the complex number in the denominator:

W = e−nπ/Menπ/2M
1 − (e−nπ)

enπ/2M − e−nπ/2M

= e−nπ/2M
1 − (e−nπ)

enπ/2M − e−nπ/2M

= e−nπ/2M
1 − (e−nπ)

−2 sin(nπ/2M)
(50)

From now on we can proceed like in [14] and other text-
books in Fourier analysis, where it is customary to multiply
the numerator by e−nπ/2 × e+nπ/2 to get

W = e−nπ/2Me−nπ/2
e+nπ/2 − (e−nπ/2)

−2 sin(nπ/2M)

= e−n(π/2M+π/2) sin(nπ/2)

sin(nπ/2M)

which is a common expression found in signal processing text-
books.

Or, alternatively, one can just recognise that the numer-
ator in (50) is given by 1 − (−1)n, which is either equal to 0
(for even values of n) or 2, for odd value of n, resulting in:

W = e−nπ/2M
2

−2 sin(nπ/2M)
=

e−nπ/2M

sin(nπ/2M)
(51)

for n odd and W = 0 for n even. For n = 0 there is an
indetermination in W , but this will not be a problem in our
calculations, as will be seen in the sequel. The second term
of the coefficient cn is

X =
N∑

k=M+1

e−nπk/M

which is also a PG with the same ratio and the same number
of terms as W , the only difference being the first term, which
now is given by e−nπ(M+1)/M instead of e−nπ/M . Thus it
seems obvious that

X =
e−nπ(M+1)/M

e−nπ/M
W = e−nπW = (−1)nW

which gives X = W for n = 0 or n even, and X = −W for n
odd. Since cn = W −X, this gives cn = 0 for n = 0 or n even,
and cn = 2W for n odd. Finally, using the expression (51):

cn =
2e−nπ/2M

sin(nπ/2M)

for n even and cn = 0 otherwise.
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