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Abstract This work presents a comparison among

three different control strategies for multivariable

processes. The techniques were implemented in a pilot

plant with coupled control loops, where all steps used

to design the controllers were described allowing to

establish a trade-off between algorithm complexity,

information needed from the process and achieved

performance. Two data-driven control techniques are

used: Multivariable Ultimate Point Method (MUPM)

to design a decentralized PID controller and Virtual

Reference Feedback Tuning (VRFT) to design a

centralized PID controller. A mathematical model

of the process is obtained and used to design a

model-based Generalized Predictive Controller (GPC).

Experimental results allow us to evaluate the

performance achieved for each method, as well as to

infer on their advantages and disadvantages.

Keywords MIMO control · Ultimate point method ·
VRFT · System identification · MPC

1 Introduction

Multivariable systems are ubiquitous in Process Con-

trol specially in Oil & Gas and Pulp & Paper indus-

tries (Skogestad and Postlethwaite 2005; Al-Naumani
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and Rossiter 2015; Rojas et al 2012; Dumont 1986).

Multiple-input multiple-output (MIMO) processes pre-

sent interactions between control loops, such that op-

erational changes in one sub-system disturb or affect

properties of other sub-systems. Different strategies are

used to control MIMO processes. When interactions are

weak, simple strategies that completely disregard the

multivariable nature of the process can be used. How-

ever, when coupling is strong, using single-input single-

output (SISO) techniques would result in poor perfor-

mance.

When high performance is expected usually a more

complex control structure is used, which demands a

larger amount of information from the process (sensors,

models and experimental data), uses more complex al-

gorithms (for instance model predictive, adaptive or

nonlinear control) and finally requires more time to be

designed (Garćıa et al 1989; Bodson and Groszkiewicz

1997; Krstic et al 1995). When low performance is ac-

cepted, it is usual to use simpler control structures (for

instance a decentralized PID controller) that require

less information about the process, are easier to imple-

ment and tune, resulting in smaller time to obtain an

adequate performance (Campestrini et al 2006; Vu and

Lee 2010; Jin et al 2013).

Control techniques can be divide into two large

groups: data-based or data-driven and model-based.

Data-based techniques do not use a mathematical

model from the process to design the controller. All

information used from the process is collected from

experimental data. One example of this class is the

classical Ziegler & Nichols technique (Ziegler and

Nichols 1942), that uses data from experiments to

tune PID controllers. Other examples are data-driven

techniques developed after the 90’s like Iterative

Feedback Tuning (Hjalmarsson et al 1998), Virtual
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Reference Feedback Tuning (Campi et al 2002;

Campestrini et al 2016) and Correlation based

Tuning (Karimi et al 2004; Yubai et al 2009). These

techniques are usually used to design low order

controllers (SISO and MIMO), such as PID and

lead-lag controllers. On the other hand, model-based

methods use a mathematical model of the process to

design the controllers and are mostly used with high

order controllers like full-order state-feedback with

state-observation or model predictive control (MPC)

(Garćıa et al 1989).

In this work we compare three different MIMO

control design methods, each one using different

controller structures. Each control method requires

different information from the process (model or

experimental data), has different complexity in the

implementation and results in different closed-loop

performance. The objective of this work is to describe

all necessary steps to implement the controllers in

order to give the reader an overall complexity in using

the technique and the limitations of each one. To

achieve that, the chosen control methods are used to

solve the same problem, which is common in process

control: level control of liquids in coupled tanks. This

process is present in many industrial applications, is

easy to understand and therefore is useful for

comparison of control techniques. The chosen

controller structures vary from simple decentralized

PID, through centralized PID and MIMO MPC and

the implemented techniques are Multivariable

Ultimate Point Method (Campestrini et al 2009),

which is a data-driven technique inspired in the SISO

Ziegler-Nichols method, MIMO Virtual Reference

Feedback Tuning method (Campestrini et al 2016),

that is also a data-driven method which is an

extension of VRFT for multivariable systems, and

Generalized Predictive Control (Clarke et al 1987)

which is a variant of MPC.

The paper is organized as follows. Section 2 presents

the Pilot Plant specifications. Section 3 describes the

problem formulation, the control objective and the used

controller structures. Data-driven control is described

in Section 4, which presents the Multivariable Ultimate

Point Method and the Virtual Reference Feedback Tun-

ing method description and application to the Pilot

Plant. Section 5 describes the Generalized Predictive

Control algorithm, which is a model-based technique.

A mathematical model of the plant is identified, and

this model is used in the design of the controller. The

closed-loop response is presented both in simulation

and experiments. Section 6 presents a discussion and

comparison among all control techniques applied and

Section 7 is a brief conclusion.

Valve 2 Valve 1

Pump 1

Pump 2

Tank 2

Tank 1

Storage tank

F1(t)F2(t)

F2(t)

Fd2(t)

Fd1(t)

Fig. 1 Schematic diagram of the pilot plant.

2 Pilot plant specifications

The pilot plant is built with off-the-shelf equipments

and it possesses typical industrial process’ character-

istics. In order to provide energy to the fluid (water)

and dislocate it through the process, the plant has two

centrifugal pumps driven by induction motors of 0.25

kW which are controlled by frequency inverters. Usu-

ally this pumps are kept with a fixed frequency. The

system also features two globe valves used to regulate

the liquid flow rate. These valves are intelligent equip-

ments with internal PID positioners that ensures the

opening of the valves are always in the correct position.

The plant’s tanks present cylindrical geometry with ca-

pacity of 70 liters each. Also, to supply water for the

experiments, the plant has a 250 liter storage tank. Fig.

1 shows a schematic diagram of the pilot plant.

Communication between the plant’s devices is

made up in three different layers, as can be seen in

Fig. 2. Communication between the frequency

inverters and a transducer occurs on the first (lowest)

layer, translating the command signals sent by the

programmable logic controller (PLC) to 4 − 20 mA

signals. Transducers, positioners, sensors and the PLC

are on the second (intermediate) layer. These

equipments are intelligent, i.e. they can execute

functions of control, mathematics and communicate

via Foundation Fieldbus H1 protocol. The last (upper)

layer holds the communication between the PLC and

a computer via TCP/IP and OPC (OLE for Process

Control) protocols. The interface with the user is

made by Elipse SCADA supervisory. Through the

supervisory the user can set the experiments up,

configure controller parameters and acquire data
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Fig. 2 Plant’s network diagram.

from experiments. The flexibility of the system

allows the user to establish a connection with

MATLAB/Simulink via OPC server to apply

input and/or reference signals like steps, ramps,

pseudorandom binary sequences (PRBS) and

sinusoidal signals. Also, it is possible to implement

different control structures, from simple decentralized

PID control to complex MPC.

3 Problem formulation

The objective of the control system is reference tracking

of both tank levels. Tank 1 level is denoted y1(t) while

y2(t) is the level of tank 2, where t is the continuous

time variable measured in seconds. In order to change

the liquid flow and control the tank levels the opening

of valves is manipulated while the pumps are kept in a

constant speed.

The opening percentage of valve 1 is denoted u1(t)

while u2(t) is the opening of valve 2. Fig. 1 shows that

the water is pumped from the storage to tank 2 through

valve 1, from tank 1 to tank 2 through valve 2 and that

the liquid returns to the storage by the effect of gravity.

This configuration leads to a multivariable behavior of

the system, since both inputs (u1(t) and u2(t)) impact

in the level of both tanks (y1(t) and y2(t)).

The dynamics of this process can be approximated

by a linear multivariable model either in continuous- or

discrete-time using Laplace or Z transform. The model

is written on the frequency domain as

Y = GU (1)[
y1
y2

]
=

[
g11 g12
g21 g22

] [
u1
u2

]
, (2)

where Y ∈ R2 is the output vector (liquid levels), U ∈
R2 is the input vector (valve openings) and G is the

MIMO process model.

The objective of the controller is to automatically

choose the input vector U in order to ensure that the

output Y respects some performance requirements, usu-

ally measured with some characteristics of the system’s

temporal response, as settling time ts, rise time tr, max-

imum overshoot Mo% or also described as some error

norm between the output Y and a reference signal R,

which specifies the desired trajectory for the output.

Generically, the controller algorithm can be described

as a function f that maps the output Y , the reference

signal R and some other tuning parameters P ∈ Rp to

the controller output U :

U = f(Y,R, P ), (3)

This algorithm may be some complex nonlinear

model predictive control or some simple PID

controller. When PID controllers are used, (3) is

simplified and it is given by

U = C(P )(R− Y ). (4)

In other words, the controller signal U is the error be-

tween the reference R and the output Y , filtered by

the controller transfer function C, which has some tun-

ing parameters P . Usually the parameters comprise the

proportional KP , integral KI and derivative KD gains

of the MIMO controller.

Since the pilot plant has two inputs and two out-

puts, the controller can be written as

C(P ) =

[
c11(ρ11) c12(ρ12)

c21(ρ21) c22(ρ22)

]
(5)

where each subcontroller cij , i = 1, 2; j = 1, 2 is a PID

controller in continuous or discrete time and

P = [ρT11 ρ
T
12 ρ

T
21 ρ

T
22]T (6)

are the tuning parameters. In continuous-time the con-

troller is written in the frequency domain as

cij(ρij) = Kij
p +

Kij
i

s
+Kij

Ds (7)

while in discrete-time it is written as (Åström and Wit-

tenmark 1997)

cij(ρij) = Kij
p +Kij

i

Ts
1− q−1

+Kij
D

1− q−1

Ts
(8)

where q is the shift operator (qx(k) = x(k + 1) and

q−1x(k) = x(k − 1)), ρij = [Kij
p Kij

i Kij
D ]T and Ts is

the sampling interval.

When the system is uncoupled (one process vari-

able does not influence another) or when the perfor-

mance requirements are not strict (it is allowed that

one control-loop disturbs another), it is usual to use a
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decentralized PID controller that has restrictive struc-

ture with c12 = c21 = 0, such that

C(P ) =

[
c11(ρ11) 0

0 c22(ρ22)

]
. (9)

When the MIMO process (2) is controlled by the

MIMO PID controller (4), it is possible to compute

the influence of the reference signal R on the output

in closed-loop:

Y (P ) = T (P )R (10)

T (P ) = (GC(P ) + I)
−1
GC(P ). (11)

where it is explicitly described that the controller pa-

rameter vector P affects the output of the closed loop

system. The objective of the control methods is to tune

the parameters P in order to ensure the outputs Y re-

spect some desired performance requirements.

In this paper, three different control methods are

used to control both levels of the pilot plant. Firstly,

a simple decentralized PI controller is tuned using the

Multivariable Ultimate Point Method, then a central-

ized PI controller is tuned using the Virtual Reference

Feedback Tuning method. Finally a Model Predictive

Controller is used to obtain a closed-loop system with

strict performance requirements.

4 Data-driven control

Perhaps the most known data-driven control method is

the classical Ziegler-Nichols (ZN) tuning method and

related methods for SISO systems (Ziegler and Nichols

1942), which are still largely used in industrial applica-
tions. Either an open-loop - Step Response Method - or

closed-loop - Frequency Response Method - experiment

is performed and some features of process dynamics are

obtained in order to tune PI or PID controllers through

simple formulas. ZN formulas were obtained empirically

with a large amount of processes and the expected re-

sult of their application is good response to load distur-

bances. Different sets of formulas were also proposed

for enhancing the performance of closed-loop systems

to reference changes, like Chien, Hrones and Reswick

method (Åstrom and Hägglund 1995). However, using

such formulas that are based in only two quantities, the

user cannot choose the closed-loop performance, but ex-

pect a satisfactory result for cases where process vari-

ables’ variations are not critical.

When process variables are coupled, the MIMO na-

ture of the process must be taken into account for con-

troller tuning, and SISO tuning methods are not ap-

propriate. MIMO approaches of the frequency response

method were proposed for tuning decentralized PID

controllers (Loh et al 1993; Palmor et al 1995; Cam-

pestrini et al 2009), where a relay feedback experiment

is performed to obtain the ultimate quantities, and the

controller is obtained from simple formulas based on

these quantities. Notice that, as in the SISO case, the

user cannot choose a specific closed-loop performance.

For the cases where the performance obtained with

ZN tuning is unsatisfactory, more information

can be used to controller tuning. Since the 90’s

many data-driven tuning method were developed.

Such methods use a batch or a set of batches of

input/output data in an optimization problem which

results in parameters of a fixed-structure controller.

The most known are Iterative Feedback Tuning (IFT)

(Hjalmarsson et al 1998), Correlation based Tuning

(CbT) (Karimi et al 2004) and Virtual Reference

Feedback Tuning (VRFT) (Campi et al 2002). The

main differences between these methods are the

optimization criterion used to obtain the controller

parameters and the number of input/output collected

batches. While VRFT is a non-iterative method that

uses one or two batches of input/output data,

methods like IFT and CbT are iterative and typically

use more than 30 batches. The advantages of these

newer methods are many: more information about the

process is used, resulting in better controllers; there is

a larger flexibility in choosing the structure of the

controller, they are not restricted to PID; and the user

can choose the desired performance for the closed-loop

system, while with ZN methods the performance only

depends on the chosen table.

In the next subsections we will describe a MIMO

version of the ZN methods and a MIMO version of the

Virtual Reference Feedback Tuning Method, with ap-

plication to the pilot plant.

4.1 Multivariable ultimate point method

The multivariable ultimate point method, presented in

(Campestrini et al 2009), extends the well-known ulti-

mate point method (Åstrom and Hägglund 1995) for

MIMO systems. In the well-known SISO case (Åstrom

and Hägglund 1995), the ultimate point is defined as the

system frequency response (amplitude and frequency)

when its phase reaches ±180◦. Usually, the controller

tuning is performed using the following procedure:

Step 1: perform a relay feedback experiment so

a sustained oscillation is obtained at the system out-

put and collect the oscillation frequency (ultimate fre-

quency ωu);

Step 2: calculate the ultimate gain Ku with col-

lected relay and output amplitudes;
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Step 3: calculate the PI/PID controller gains

through simple formulas, using the well known

Ziegler-Nichols (Ziegler and Nichols 1942) or

Tyreus-Luyben (Luyben 1986) tables.

The Nyquist analysis of the loop function L(s) =

G(s)C(s) shows that, in the SISO case, the ultimate

point of the loop function is shifted to a specific point

in the s-plane, depending on the used formula, far away

from the point −1 + j0. Table 1 shows points in the

s-plane to which the ultimate point is moved using

Ziegler-Nichols and Tyreus-Luyben controllers. Notice

that PI controllers can move the ultimate point to the

second quadrant while PID controllers move it to the

third quadrant of the plane.

Table 1 Points to which the ultimate point is moved using
Ziegler-Nichols and Tyreus-Luyben controllers.

Ziegler-Nichols Tyreus-Luyben

PI −0.4 + j0.08 −0.31 + j0.023
PID −0.6− j0.28 −0.45− j0.42

The Multivariable Ultimate Point method is formu-

lated using the idea of shifting the ultimate point on

the complex plane to MIMO systems. The definitions

for the ultimate quantities for MIMO systems are based

on the multivariable version of Nyquist theorem, known

as Generalized Nyquist theorem (Maciejowski 1989). As

the pilot plant possesses two inputs and two outputs,

we present the definition to the TITO case, but the

concepts can be easily extended for the general case.

Definition 1 (Characteristic loci) Let the system

be put under pure proportional control, i.e. U = −KY ,

where K = diag{Kp11 ,Kp22}. Denote λi(s), ∀i = 1, 2

the eigenvalues of G(s)K. The graphs of λi(s) as s goes

around the Nyquist contour are called the characteristic

loci. ut

The stability limit is reached when at least one char-

acteristic locus crosses the point −1+j0 for some Ku =

diag{Ku11
,Ku22

} and, if the process is coupled, both

outputs oscillate with the ultimate frequency ωu. Thus,

the objective of the method is to shift both process char-

acteristic loci far away from the point −1+j0, bringing

them closer to the origin. This can be done by fixing

the desired point Λ for both λi(jωu) or for the one that

crosses the point −1 + j0 with controller Ku, consider-

ing that the other one will be closer to the origin.

Consider a TITO system. Inserting a decentralized

controller into the loop results in the loop transfer func-

tion in the frequency domain

L(jω) =

[
g11(jω) g12(jω)

g21(jω) g22(jω)

] [
c11(jω) 0

0 c22(jω)

]
, (12)

and the eigenvalues of G(jω)C(jω) define both charac-

teristic loci for all frequencies:

λ1,2(jω) =
1

2
g11(jω)c11(jω) + g22(jω)c22(jω)

± 1

2
[g211(jω)c211(jω)− 2g11(jω)c11(jω)g22(jω)c22(jω)

+ g222(jω)c222(jω) + 4g12(jω)c11(jω)g21(jω)c22(jω)]
1
2 .

(13)

In this work, we want to move one characteristic locus

to the desired point Λ when ω = ωu. Setting ω = ωu,

λ1(jωu) = Λ and rearranging terms in (13) we have

Λ2 − Λ[g11(jωu)c11(jωu) + g22(jωu)c22(jωu)] =

[g12(jωu)g21(jωu)− g11(jωu)g22(jωu)]c11(jωu)c22(jωu).

(14)

For a desired Λ and known G(jωu), (14) has two

unknowns (c11(jωu) and c22(jωu)). Setting

c22(jωu) = αc11(jωu), (15)

where α = g11(0)/g22(0) gives the same relative signif-

icance to both loops, and substituting (15) into (14),

yields:

α[g12(jωu)g21(jωu)− g11(jωu)g22(jωu)]c11(jωu)2+

[Λg11(jωu) + αΛg22(jωu)]c11(jωu)− Λ2 = 0. (16)

Because (16) has two different solutions for

c11(jωu), we choose the one where the real part has

the same signal of g11(0). This procedure is adopted

considering that the controller is decentralized and so

it will be more effective for the main diagonal

elements of the transfer function matrix.

The PI controller parameters are given by1
K11
p = Re{c11(jωu)},

K11
i = − Im{c11(jωu)}ωu,

K22
p = Re{c22(jωu)},

K22
i = − Im{c22(jωu)}ωu.

(17)

Notice that the controller parameters can be calculated

if the ultimate frequency ωu and the process frequency

response at that frequency G(jωu) are known. Different

configurations of relay feedback experiment can be per-

formed in a MIMO system (Palmor et al 1995; Campes-

trini et al 2006). Through a decentralized relay feedback

(DRF), the MIMO ultimate frequency can be identified.

However, this experiment is not sufficiently informa-

tive to identify G(jωu) and a second experiment must

be performed: either a second DRF, where the relay

1 For PID controller parameters see (Campestrini et al
2009).



6 E. Boeira et al.

amplitudes are modified, with the same oscillation fre-

quency, or an open-loop experiment, where the process

is excited at such frequency (Campestrini et al 2009).

The MIMO tuning procedure adopted in this work is

as follows:

Step 1 : obtain G(0) from step changes in an open

or closed-loop experiment;

Step 2 : perform a DRF experiment in order to

obtain a sustained oscillation, collect the input and out-

put signals u1r(jωu), u2r(jωu), y1r(jωu), y2r(jωu) and

the oscillation frequency - ultimate frequency ωu;

Step 3 : perform an open-loop experiment, where

the second input is excited with u2(t) = B sin(ωut) and

collect the output signals y1s(jωu), y2s(jωu);

Step 4 : calculate G(jωu) using the collected sig-

nals on Step 2 and Step 3 into the set of equations
y1r(jωu) = g11(jωu)u1r(jωu) + g12(jωu)u2r(jωu)

y2r(jωu) = g21(jωu)u1r(jωu) + g22(jωu)u2r(jωu),

y1s(jωu) = g12(jωu)B

y2s(jωu) = g22(jωu)B.

(18)

Step 5 : Define the desired complex point Λ to

which one characteristic loci is moved;

Step 6 : Calculate the PI controller gains through

(16) and (17).

For more authentic and accurate signal analysis

and frequency response identification, an alternative

technique to the common Describing Function method

(Åstrom and Hägglund 1995) is applied: the fast

fourier transform (FFT) algorithm as proposed in (Bi
et al 1997; Wang et al 1997; Mehta 2013) is used to

compute the discrete fourier transform (DFT) of each

collected signal to be applied to (18).

4.1.1 Experimental Results

The first information needed to apply the Multivariable

Ultimate Point method is the constant α. So, in order

to obtain it, we performed an open loop experiment on

the plant: we manipulated valve 1 from 75% to 65%

and valve 2 from 35% to 75% and compared the steady

state values for each level. The tank 1 level variation

due to the step on valve 1 went from 23.66 cm to 17.21

cm. Tank 2 varied from 22.04 cm to 18.26 cm due to the

manipulation of valve 2. That being said, we obtained

g11(0) = 0.645, g22(0) = 0.378, resulting in α = 1.7.

The following step is the application of the DRF

experiment on the pilot plant to identify the ultimate

quantities. We defined the reference signals as r(t) =
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Fig. 3 Inputs and outputs of the DRF experiment on the
pilot plant.

r1 = r2 = 25 cm and closed the loop with the bang-

bang controller:

ui(t) =

{
ui, ei(t) > 0,

ui, ei(t) < 0, ∀i = 1, 2,
(19)

with ui and ui chosen by the user as the control in-

puts maximum and minimum values. The objective of

this experiment is to change ui and ui until a symmet-

ric oscillation around the reference is reached for both

outputs. In Fig. 3 we show the output and control sig-

nals obtained in the DRF experiment performed on the

pilot plant, where the inputs’ limits were chosen as

u1 = 100%, u2 = 66%,

u1 = 33%, u2 = 18%. (20)

The FFT algorithm was applied to the measured

signals and the ultimate frequency was estimated as

0.11 rad s−1. With the knowledge of the ultimate fre-

quency we were able to implement the extra experi-

ment, with the following inputs:

u1(t) = 67%, (21)

u2(t) = 42% + 10sin(0.11t), (22)

where the bias was inserted to maintain the process

near the DRF experiment operation region. The out-

put signals obtained from this experiment are shown in

Fig. 4. Again, the FFT algorithm was applied to the

collected signals, allowing the identification of G(jωu)

by solving (18):

g11(j0.11) = −0.0046 + j0.0002 = 0.0046 178.06◦,

g12(j0.11) = 0.0004 + j0.026 = 0.026 89.13◦,

g21(j0.11) = −0.055− j0.0433 = 0.0436 −97.3◦,

g22(j0.11) = −0.0046 + j0.0195 = 0.02 −103.3◦. (23)
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Fig. 4 Output signals of the process on the extra experiment:
application of a sinusoidal signal.

To prove that the ultimate point was in fact identi-

fied, the critical gain was calculated:

ku11
=
|u1r(j0.11)|
|y1r(j0.11)|

= 45.47,

ku22
=
|u2r(j0.11)|
|y2r(j0.11)|

= 14.8, (24)

and from (13), the following characteristic loci positions

were obtained:

λ1(j0.11) = 0.724− j0.216 = 0.755 −16.9◦,

λ2(j0.11) = −1.0016− j0.0657 = 1.0037 −176.25◦.

(25)

With the identification of the process frequency re-

sponse at its ultimate frequency we proceed to the cal-

culation of the PI controllers. We choose to move the

second characteristic loci λ2(j0.11) to two distinct de-

sired points: the Ziegler-Nichols point (i.e. Λ = −0.4 +

j0.08) and the Tyreus-Luyben point (i.e. Λ = −0.31 +

j0.0023). Solving (16) and (15) with the desired points

and G(j0.11), we get the following controllers for the

Ziegler-Nichols point:

c11ZN
(s) =

7.39(s+ 0.005792)

s
(26)

c22ZN
(s) =

12.61(s+ 0.005792)

s
, (27)

and for the Tyreus-Luyben point:

c11TL
(s) =

5.96(s+ 0.004157)

s
(28)

c22TL
(s) =

12.61(s+ 0.004157)

s
. (29)

Finally, the controllers were implemented and the

system was put to operate in closed loop. For both con-

troller sets, we started the process with a reference of
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Fig. 5 Comparison between the closed loop responses for the
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Fig. 6 Comparison between the control signals for the
Ziegler-Nichols and the Tyreus-Luyben PI tuning.

30 cm and then applied at each reference a step of −10

cm at different instants. Fig. 5 shows the closed loop re-

sponse of the levels for each case and Fig. 6 shows the

control signals. Both methods resulted in stable closed-

loop systems. As expected, the change of setpoint in

one loop affects the level of the other loop since the

designed PI controller is decentralized. In the next sec-

tion we present the Virtual Reference Feedback Tuning

which is also a data-driven method but can be used

to design centralized controllers (with full C matrix),

enhancing the closed-loop performance.

4.2 Virtual Reference Feedback Tuning method

Virtual Reference Feedback Tuning is a non-iterative

data-driven method that solves an optimization prob-

lem to tune the parameters of a fixed-structure linear

controller (Campi et al 2002; Campestrini et al 2016). It
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assumes that a feedback controller is used as described

in equation (4).

The MIMO controller C(P ) may have a full struc-

ture, as in (5), or be decentralized, as presented in (9).

Each non-zero sub-controller is discrete in time and lin-

early parametrized, that is

cij(q, ρij) = ρTijC̄ij(q), ρij ∈ Rp, (30)

where ρij is the vector of tuning parameters, C̄ij(q) is

a p-vector of fixed causal rational functions.

The controller parameters can be grouped in an ex-

tended vector P , which is given by (6) in the case of a

full controller and represents all parameters to be ob-

tained by the method.

Many data-driven methods, including VRFT, solve

a model reference problem, where the controller param-

eters are adjusted so the obtained closed-loop response

Y (P ) is as close as possible to a desired response

Yd = TdR, (31)

where Td is the reference model and represents the

closed loop behavior chosen by the user. The model

reference problem is usually described as

min ‖(T (P )− Td)R‖, (32)

which depends on the unknown plant G.

Instead, VRFT minimizes another cost function,

which depends only on input-output collected

data. Besides, since the controller is linear in the

parameters, the VRFT cost function is quadratic and

solved through linear least-squares, avoiding local

minima.

Consider an open or closed-loop experiment, from

where input/output data,

Z = {U(k), Y (k), for k = 1, . . . , N} (33)

are collected, where k denotes the discrete time vari-

able, since the system is sampled and t = kTs. From the

output signal Y (k) the user calculates a virtual refer-

ence signal R̄(k) that is defined such that Td(q)R̄(k) =

Y (k), and the virtual error, which is given by Ē(k) =

R̄(k)− Y (k).

Even though the plant G is unknown, when it is fed

by U(k) (the measured input signal), it generates Y (k)

as output. So, a “good” controller is one that gener-

ates U(k) when fed by Ē(k). Since both signals U(k)

and Ē(k) are known, the controller design can be seen

as the identification of the dynamical relation between

Ē(k) and U(k). As a result of this reasoning, the MIMO

VRFT method minimizes the following criterion

P = arg min
P

JV R(P ) (34)

JV R(P ) =

N∑
k=1

‖F (q)[U(k)− C(q, P )Ē(k)]‖22 (35)

where now U(k) and Ē(k) are vectors, C(q, P ) is the

controller matrix, F (q) is a filter and ‖ · ‖22 is the L-2

norm squared of a matrix. This filter is used to ap-

proximate the minima of (32) and (35). When data is

collected in open loop, an usual choice for this filter is

given by

F (q) = Td(q)(I − Td(q)).

When data is collected in closed loop, filter F (q) is also

a function of signal espectra, which should be estimated

(Campestrini et al 2016).

The controller design through VRFT can be sum-

marized as follows:

Step 1: perform an open-loop or closed-loop ex-

periment and collect the process input and output sig-

nals;

Step 2: choose the controller structure, define

both reference model Td(q) and filter F (q);

Step 3: calculate the controller parameter vector

P as the solution of (34), which is given by (Campes-

trini et al (2016)):

P =

(
N∑
k=1

ϕ(k)ϕT (k)

)−1 N∑
k=1

ϕ(k)W (k), (36)

where

W (k) = F (q)U(k), ϕ(k) = [A1 A2],

Ax =

[
Fx1E1(k)

Fx2E2(k)

]
, Ex(k) =

[
C̄x1(q)ē1(k)

C̄x2(q)ē2(k)

]
(37)

for x = 1, 2.

4.2.1 Experimental Results

In order to apply the MIMO-VRFT method presented

above to tune the pilot plant controller, an open-loop

experiment was performed, applying PRBS signals in

both inputs, for 8000 s, where the sampling time was

Ts = 1 s. This signal is widely used in system identifi-

cation because it is deterministic, has a fixed amplitude

and excites a large band of frequencies. The input sig-

nals are presented in Fig. 7 while the obtained output

signals are presented in Fig. 8.

In this work, we used VRFT to design a centralized

PI controller, such that

cij(q, ρij) =
[
Kij
p Kij

i

] [ 1
1

1−q−1

]
,

for i = 1, 2,

j = 1, 2.
(38)

The reference model was chosen to obtain a closed-

loop response that is faster than the open-loop one,
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Fig. 7 PRBS input signals applied to the pilot plant.
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Fig. 8 Output signals of the pilot plant obtained with input
signals presented in Fig. 7.

with no overshoot and null steady-state error. Based

on that, we chose

Td(q) =

[
0.03q−1

1−0.97q−1 0

0 0.02q−1

1−0.98q−1

]
, (39)

which represents performances with settling time of 128

s for the first output and 193 s for the second out-

put. Filter F (q) was chosen as F (q) = Td(q)(I − Td(q))
(Campestrini et al 2016).

The obtained controller is given by

C(q, P ) =

[
4.3893(1−0.9918q−1)

(1−q−1) 3.12
−10.493(1−0.9933q−1)

(1−q−1)
0.266(1−0.8282q−1)

(1−q−1)

]
,

(40)

which results in the closed-loop performance presented

in Fig. 9, with control signals presented in Fig. 10. No-

tice that even though we have chosen to tune PI sub-

controllers, in C12(q, ρ12) integrator term is null and

the controller became only a Proportional one. The ob-

tained result is very similar to the desired response,

where the influence of one loop in the other one is prac-

tically unnoticed, for both outputs.
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Fig. 9 Closed-loop response obtained with the estimated
controller C(q, P ) through VRFT compared to the reference
model response.
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Fig. 10 Control signals of the closed-loop system with the
estimated controller C(q, P ) through VRFT.

Notice that a closed-loop experiment could have

been performed to collect data, the only restriction is

that the collected data should be informative enough

to estimate all the controller parameters (8 in the case

of a centralized PI). In this case, the relay experiment

would not be informative enough, resulting in a poor

performance; however the closed loop data obtained

with one of the previous controllers (ZN or TL) would

suffice.
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5 Model-based control

In the previous section we have presented two differ-

ent data-driven methods to design linear-time invariant

controllers for MIMO process. These methods use only

data from experiments to find the controller parame-

ters without using a model of the process. The meth-

ods may achieve reasonable performance, as shown by

the experimental results, but they were not developed

for difficult cases when there are hard limitations on

control signals or when the settling time must be very

short.

When high performance is desired, usually the de-

signer needs to resort to more complex control struc-

tures that consider limitations on the plant and use a

complete mathematical description of the process. Such

methodology is classified as model based control. One

of the most used high performance control algorithms

is model predictive control (MPC), which often uses a

model to predict the output of the system and optimizes

the control signal to improve closed-loop performance.

The control signal is optimized at each new collected

sample, as described in (3), where it is explicitly shown

that the control signal depends on the reference signal

R, plant output Y and a set of parameters P , which

describes here both the adjustable parameters of the

algorithm and the model of the process.

An important element on these model based control

methods is a model of the process that precisely de-

scribes the relations between input and output data. In

the next subsection we describe how the model of the

pilot plant was obtained and the use of MPC to design

high performance controllers.

5.1 Mathematical modeling

Consider the liquid level plant diagram presented in

Fig. 1. It is assumed that flow F (t), defined in cm3 s−1,

at each valve is proportional to the percentage opening

u(t), and that valve dynamics can be neglected since

they are much faster than process dynamics. Then we

have:

Fi(t) = kviui(t), ∀ i = 1, 2, (41)

where F1,2 are the flow at each valve and kv1,2 are the

flow gains, in cm3 s−1. Also, it is assumed that the dis-

charge flow on both tanks (Fd1,d2) can be written as

function of the levels by the flow equation through an

orifice:

Fdi(t) = CdiA0i

√
2gyi(t) = kdi

√
yi(t), ∀ i = 1, 2, (42)

with Cdi being the discharge coefficient of the orifice,

A0i the orifice’s area in cm2, g the gravity accelera-

tion constant in cm s−2 and kdi the discharge gain in

cm5/2 s−1.

Developing the mass-balance equations of each tank,

we obtain a system of differential equations describing

the level variation at each tank:

ẏ1(t) =
−F2(t)− Fd1(t) + Fd2(t)

At1
(43)

ẏ2(t) =
F1(t) + F2(t)− Fd2(t)

At2
, (44)

with At1 and At2 being the cross section area of tanks

1 and 2 respectively, in cm2. Using (41) and (42) we get

the following pair of nonlinear differential equations:

ẏ1(t) = − kv2
At1

u2(t)− kd1
At1

√
y1(t) +

kd2
At1

√
y2(t) (45)

ẏ2(t) =
kv1
At2

u1(t) +
kv2
At2

u2(t)− kd2
At2

√
y2(t), (46)

where ẏ1,2(t) are defined in cm s−1.

This model is now linearized around the equilibrium

point: y1e, y2e, u1e and u2e. The linearized model is very

useful for posterior identification and control. Using the

following change of variables:

y1δ(t) = y1(t)− y1e (47)

y2δ(t) = y2(t)− y2e (48)

u1δ(t) = u1(t)− u1e (49)

u2δ(t) = u2(t)− u2e (50)

and truncation of the Taylor Series on the linear terms

results[
˙y1δ(t)

˙y2δ(t)

]
=

[
−a11 a12

0 −a22

] [
y1δ(t)

y2δ(t)

]
+

[
0 −b12
b21 b22

] [
u1δ(t)

u2δ(t)

]
,

(51)

where the constants are shown at Table 2 as function

of the physical attributes.

Table 2 Constants of the hydraulic system.

Const. Value Unit Const. Value Unit

a11
kd1

2At1
√
y1e

s−1 b12
kv2

At1
cm s−1

a12
kd2

2At1
√
y2e

s−1 b21
kv1

At2
cm s−1

a22
kd2

2At2
√
y2e

s−1 b22
kv2

At2
cm s−1

This model can also be written as a transfer function

matrix

Yδ(s) = Gδ(s)Uδ(s), (52)[
y1δ(s)

y2δ(s)

]
=

[
a12b21

(s+a11)(s+a22)
−b12s

(s+a11)(s+a22)
b21

s+a22
b22

s+a22

] [
u1δ(s)

u2δ(s)

]
.

(53)
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The discrete-time version of the above model can be

written, with the backward shift operator, as

Yδ(k) = Gδ(q, θ)Uδ(k), (54)

Gδ(q, θ) =

[
θ1q

−2

(1+θ5q−1)(1+θ6q−1)
−θ2(1−q−1)

(1+θ5q−1)(1+θ6q−1)
θ3q

−1

1+θ6q−1
θ4q

−1

1+θ6q−1

]
,

(55)

where parameters θi represent the constants of the sys-

tem, and can be written in a vector form as

θT =
[
θ1 θ2 θ3 θ4 θ5 θ6

]
. (56)

In principle, constants θi can be calculated using

information from Table 2 which depends on physical

parameters kdi, kvi, Ati and operation point yie. How-

ever, these physical parameters are unknown and diffi-

cult to obtain. In this work, the parameter vector θ is

estimated directly from input-output data, comparing

the simulation of the model with data collected from

experiments. The parameters are estimated solving the

following optimization problem:

θ̂ = arg min
θ

N∑
k=1

‖Y0(k)−Gδ(q, θ)U0(k))‖2 (57)

where Y0(k), U0(k), i = 1, 2, . . . , N is a batch of input-

output data collected from an experiment. The opti-

mization problem is nonconvex and can be solved using

the Newton-Raphson algorithm.

The same input-output data used by VRFT, pre-

sented in Fig. 7 and Fig. 8, were used to identify the pa-

rameters of the process model. The signals’ mean values

were subtracted from the input/output signals in order

to take into account the assumption that the model is

valid for that equilibrium point. The resulting parame-

ters of the identification procedure are shown at Table

3. The RMS error between the experimental data and

simulation with the model is 0.76 cm, which represents

a good but not perfect model.

Table 3 Identified parameters.

Parameter Value Parameter Value

θ1 3.972× 10−5 θ4 2.720× 10−3

θ2 2.974× 10−3 θ5 −9.926× 10−1

θ3 6.331× 10−3 θ6 −9.943× 10−1

5.2 Model Predictive Control

Model Predictive Control theory comprehends a set of

controller design methods which provide an optimal

control signal through minimizing an objective function

over a future-time horizon. This strategy of dynamically

optimizing the control action is also known as Reced-

ing Horizon Control, and it allows the user to consider

limitations of the process in the form of numerical con-

straints (Camacho and Bordons 2007). In order to im-

plement such method, an explicit model of the process

is used to generate a prediction of the system’s behavior

considering past input and output measurements.

There exist multiple predictive control methods,

which follow the same basic premises but use different

predictor structures or cost functions in their

formulation. Because of its intuitive character, one of

the most popular MPC methods is the Generalized

Predictive Control (GPC), which will be discussed in

this paper.

The classical formulation of GPC was adapted for

an autoregressive model with exogenous variables

(ARX model), here described for a multivariable

system of m inputs and n outputs, given as

A(q)y(k) = B(q)u(k − 1) + ε(k) (58)

where A(q) and B(q) are polynomial matrices. Also,

u(k) ∈ Rm, y(k) ∈ Rn and ε(k) ∈ Rn represent the in-

put, the output and the white noise signals respectively.

From the system’s model, it is possible to deduce a

predictor of the outputs at a future instant k+ j based

on information up until instant k, which will be ex-

pressed as ŷ(k+ j|k). In (Camacho and Bordons 2007),

such predictor is developed by considering diophantine

equations. It is also straightforward to do so by deriv-

ing the optimal predictor for the ARX model, as seen in

(Söderström and Stoica 1988) for general linear models.

The expression obtained for the predictor is

ŷ(k + j|k) = Sj(q)∆u(k + j − 1) + fj (59)

where Sj is a polynomial matrix whose coefficients cor-

respond to the plant step response coefficients. Also vec-

tor fj can be obtained recursively as

fj+1 = q(I −A(q))fj +B(q)u(k + j) (60)

where f0 = y(k) and u(k + l) = u(k − 1), ∀l ≥ 0.

The vector of control signal variations is obtained at

each instant k by minimizing a quadratic cost function

∆uF = arg min
∆u

JGPC (61)

where

JGPC =

N2∑
j=N1

||ŷ(k + j|k)− r(k + j)||2R

+

Nu∑
j=1

||∆u(k + j − 1)||2Q (62)
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where r(k + j) corresponds to the future reference sig-

nals, [N1, N2], the prediction horizon and Nu, the con-

trol horizon or yet the number of future control actions

considered. It can be noted from (62) that both the

reference tracking and the control rate are minimized

at each instant k. Also R and Q are weighting matri-

ces, which constitute the optimization parameters P ,

as seen in (3).

It should be noted that ∆uF consists of Nu control

actions for each input signal of the process, i.e. Nu×m
control actions. Only the first m future control actions

calculated are actually applied to the inputs, the rest

of them being discarded.

The following matrix representation can be derived

from (59) (Camacho and Bordons 2007):

y = Gũ + f (63)

where

y =
[
ŷ(k +N1)T . . . ŷ(k +N2)T

]T
(64)

ũ =
[
∆u(k)T . . . ∆u(k +Nu − 1)T

]T
(65)

f =
[
fTN1

. . . fTN2

]T
(66)

and the matrix G corresponds to

G =

GN1 . . . GN1−Nu+1

...
. . .

...

GN2
. . . GN2−Nu+1

 (67)

where Gj , j = N1, . . . , N2, is a matrix of dimension

n × m, whose component Gj(i, l) represents the i-th

system output at instant k+ j for a step signal applied

to the l-th input at instant k.

In order to obtain the control law, let us rewrite the

objective function presented in (62) as

JGPC = (y − r)TR(y − r) + ũTQũ (68)

where

r =
[
r(k +N1)T . . . r(k +N2)T

]T
(69)

and r(k) ∈ Rn corresponds to the reference signal vec-

tor.

Substituting (63) in (68), we have

JGPC = (Gũ + f − r)
T
R(Gũ + f − r) + ũTQũ. (70)

For a free optimization problem, the optimal solu-

tion of ũ minimizing (70) is easily obtained as

∆uF = (GTRG+Q)
−1

GTR(r− f). (71)

The predictive controller design, for each instant k,

can be summarized as

Step 1: measure the system’s outputs y(k);

Step 2: predict future behavior of the outputs over

the prediction horizon based on the explicit model of

the system, past values of u(k) and y(k) and present

value of y(k), as shown in (60);

Step 3: solve the minimization problem in (62)

and find the vector of Nu ×m control rates ∆uF ;

Step 4: apply only the first m control signal rates

of ∆uF to the process at instant k.

5.2.1 Experimental Results

The GPC algorithm was used to design a controller for

the pilot plant using the identified model described in

(55) with parameters given in Table 3. The choice of

the prediction horizon will have an influence upon the

response time of the closed loop system: the larger it is,

the closer the closed-loop poles will be from the open-

loop ones (Clarke et al 1987). For the application, we

will consider weight matrices R = 2×I and Q = I. The

algorithm has been then set for a prediction horizon of

[N1, N2] = [1, 30] and a control horizon of Nu = 30.

Moreover, in order to avoid aggressive transient be-

haviors a reference filter L(q) is used in the controller

design, given by L(q) = 0.05
(q−0.95) × I. Therefore, in the

GPC formulation, r(k) is replaced by the filtered signal

rL(k) = L(q)r(k).

From the process’ model previously identified, its

step response is easily obtained. Next, matrix G from

(68) is generated, considering the chosen prediction

and control horizons. For the purpose of comparing

expected and real behavior, a scenario of set-point

change has been simulated and then implemented on

the actual pilot plant through OPC server with

Simulink.

The scenario consisted of a step of −5 cm applied

on the reference signals for the outputs y1(k) and y2(k)

at different instants of time. The simulated and exper-

imental results can be seen in Fig. 11 for the tanks’

levels and in Fig. 12 for the valves’ opening, with an

initial operation point of 20 cm on tank 1 level and 35

cm on tank 2 level.

In Fig. 11, overall measured response is quite similar

to the simulated one, which indicates a good correpon-

dence between model and real behavior. Small differ-

ences can be noted, especially on the disturbance effect

seen in output y2(k), due to slight imprecisions of the

identified model. We can equally observe that noise is

amplified in control signal u2(t), which reflects high per-

formance demand (in our case, the weight on reference

tracking is twice as important as the weight on control

effort).
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Fig. 11 Closed-loop response obtained with GPC in simula-
tion and experiment.
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Fig. 12 Control signals of the closed-loop system with GPC
in simulation and experiment.

6 Discussion

This paper has presented three different controllers for

MIMO processes. In this section, a comparison between

the three controllers is made where many aspects of

each method are compared: structure of the controller,

information needed from the MIMO process, design pa-

rameters and achieved performance.

6.1 Structure of controllers

Three different controller structures were used with the

Pilot Plant: a decentralized PI controller, a central-

ized PI controller and an optimization based controller

(GPC).

The PI controller designed with the MUPM method

has the following decentralized structure:

C(P ) =

[
c11(ρ11) 0

0 c22(ρ22)

]
. (72)

where the elements outside the diagonal are zero. This

kind of controller is usually used when the interactions

between loops are small, because the influence of one

loop in another is disregarded. The Pilot Plant used to

test the controller has significant interaction between

loops, and as expected, a change of reference in one

loop has affected the other loop.

The PI controller designed with the VRFT method

has the following centralized structure:

C(P ) =

[
c11(ρ11) c12(ρ12)

c21(ρ21) c22(ρ22)

]
. (73)

where the matrix is full. This kind of controller is usu-

ally used when the interactions between loops are sig-

nificant, because the influence of one loop in another is

considered. As seen in the experiments, this centralized

controller can cope with the interactions between loops,

and reference changes do not produce perturbations on

the other loop.

The GPC controller has completely different struc-

ture. The control signal u(t) is computed as the solution

of an optimization problem, that considers both MIMO

dynamics of the process and nonlinearities, for instance

saturations. This kind of controller is usually used when

high performance is demanded from the closed-loop sys-

tem, which often saturates the control signal. In the ex-

periments a very good performance was obtained with-

out saturating the control signal.

6.2 Information needed to design the controller

The MUPM is a data-driven method that does not

use a mathematical model of the process to design the

gains of the controller. Instead, it uses collected data

from two specific experiments. The first experiment is a

closed-loop one with a relay controller which makes the

system oscillate with the ultimate frequency. After an

open-loop experiment is needed where the input is sinu-

soidal with the ultimate frequency. Although not using

a model (which makes the design simpler), these two

experiments are not so easy to implement, since both

open-loop and closed-loop experiments are needed.

On the other hand, the VRFT method uses only

input-output data from the process to design the con-

troller. The experimental data can be obtained from

historic data since no specific experiment is needed.
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However, it is necessary that the experiment is infor-

mative enough. For instance, if an open loop experi-

ment with constant input is realized, then the output

is also constant, and there is no information about the

dynamics of the system. So, good experimental data

should reveal the dynamics of the process, so an open-

loop experiment with PRBS is ideal, but closed-loop

experiments where all references are changed are usu-

ally enough to design the controllers.

Finally, the GPC method needs a complete model

of the process, which is usually identified from collected

data. The identification of a good model is a hard task,

and usually comprises several steps: obtaining the phys-

ical relation between variables, experimental data to ad-

just the constants of the model, selecting an algorithm

to obtain the parameters and a performing a validation

step. Since GPC uses a complete model of the process,

it is usual that the obtained performance is better with

this method, at the cost of consuming more resources

to obtain the model. When high process performance is

required, obtaining the model is worth it.

6.3 Design parameters

The only parameter of the MUPM method is the posi-

tion to where the ultimate point is moved. This point

is completely related to the used Table, where the most

common are the Ziegler-Nichols and Tyreus-Luyben.

Both are usually chosen when the control objective is

focused on disturbance attenuation and the Ziegler-

Nichols tuning usually results in a more aggressive con-

troller.

With the VRFT method, the designer needs to

choose the reference model Td(z) which describes the

desired output of the closed-loop system for each

reference signal. With this method the user has a

larger flexibility to choose the settling time and

desired overshoot. It is common to choose diagonal

matrices because they describe that the influence of

one loop in another should be null, as done in this

work. However, different choices could also be made.

The GPC method has several parameters to be de-

signed. The user needs to choose the control and pre-

diction horizons Nu, N1 and N2, matrices R and Q that

describe how control effort and reference tracking are

emphasized, and reference filter L(q) used to improve

the reference tracking behavior. Despite being very flex-

ible, the many choices the user has to make turns the

method difficult to adjust. It is common that many of

the parameters tuning is done by trial and error.

6.4 Obtained performance

In this subsection we compare the obtained

performance with each method. This comparison is

not intended to describe which method is better. The

objective is to present a numerical comparison so the

reader can better understand the limitations of each

method.

We decided to use the Integral Time Absolute Error

criterion to compare the methods where:

ITAEi =

∫ tj+400

tj

t|ei(t)|
∆rj

dt, (74)

and ei(t) = ri(t)−yi(t) is the i-loop error, and ∆rj(t) is

a normalizing constant (the amplitude of the step used

in the experiment). The criterion is computed after a

step signal is applied to one loop. Time tj is the instant

when the step signal is applied to the loop.

Table 4 Comparison of the ITAE performance index for the
step on the reference r1(t)

Method ITAE1 ITAE2

MUPM ZN 4004.27 7166.32
MUPM TL 5048.47 4867.07
VRFT 1999.46 1157.35
GPC 1018.15 1674.38

Table 5 Comparison of the ITAE performance index for the
step on the reference r2(t)

Method ITAE1 ITAE2

MUPM ZN 3866.83 6611.14
MUPM TL 4149.79 8450.38
VRFT 792.64 4255.46
GPC 752.25 1105.07

Notice that first column of Table 4 describes the

performance considering reference tracking while the

second column describes the performance considering

disturbance attenuation. Table 5 is similar, while first

column accounts to disturbance attenuation, the second

column accounts to reference tracking. It is possible to

observe that the MUPM method has the worst perfor-

mance when compared to VRFT and GPC. This is ex-

pected since the Pilot Plant presents strong interaction

between loops and the MUPM method uses a decen-

tralized controller that does not take into account this

effect. Also, GPC presented the best performance at the

cost of needing a mathematical model of the process.

The VRFT method presented very good performance

when compared to its reference model. Probably a lower

ITAE would be obtained if a faster reference model had

been chosen. Observe also that no experiment presented

input saturation. If this was the case, it would be ex-

pected that the GPC method would generate the best
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performance since it considers the saturation effect in

its formulation.

7 Concluding Remarks

We have successfully applied three different MIMO con-

trol methods in a liquid level pilot plant. The chosen

methods require different knowledge about the process,

use different controller structures and therefore result

in different performance. We have compared the advan-

tages and drawbacks of each method in a practical point

of view. In summary, as more information is available

the better is the response. MUPM method uses only

information from the critical point and can tune prop-

erly a decentralized controller. VRFT uses a batch of

data from an experiment and can tune a centralized

controller with better performance. GPC needs a com-

plete model from the process and can achieve very good

performance using an optimization based controller.
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