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Abstract— This work addresses the design of theoretical
optimal regularization matrices for the instrumental variable
method in the errors-in-variables identification framework. The
design is based on the asymptotic statistical properties of the
regularized instrumental variable estimator and it provides new
bounds for the use of regularization in this scenario as well
as new ideas to parametrize and estimate the regularization
matrix in practical situations. A numerical example shows the
effectiveness of the optimal estimator in comparison with the
classic least-squares and instrumental variable methods.

I. INTRODUCTION

Over the last decade, the regularization feature has been
widely researched and developed in the system identification
scientific community [1]. This sudden growth of popularity
is a direct consequence of the new and enlightening ideas
exposed in recent works [2], [3], [4], [5], that connected
machine learning concepts to the use and the estimation
of an optimal regularization matrix in impulse response
identification problems.

In this new paradigm, it has been demonstrated that the
regularized identification technique was able to outperform
the classical prediction error methods (PEM) in some sce-
narios, essentially because it can reduce the variance error
at the cost of introducing a small bias. So, with this whole
new interest and motivation in regularization research, this
work approaches the use of this feature in a distinct category
of problems: the identification of errors-in-variables (EIV)
dynamic systems.

The identification of errors-in-variables dynamic systems
is a wide topic in system identification literature, with several
methods, applications, and analysis available, as it can be
seen in [6], [7]. However, the main interest in this paper relies
on the so-called elementary methods to identify the impulse
response, such as the least-squares (LS) and the instrumental
variable (IV) methods [7], along with the novel regularized
extension of the IV, which is the regularized instrumental
variable (RIV) method.

It’s important to say that the RIV estimator for errors-
in-variables identification was already been addressed in the
context of data-driven control (DDC) in [8], [9]. In both
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these works, however, the use of the regularization feature
was based on a data-driven bayesian perspective of the
controller’s identification problem. On the other hand, this
work proposes a theoretical optimization of an estimation
quality criterion using the regularization matrix as the op-
timization variable in an unconstrained scenario and in a
specific constrained scenario.

II. TRUE SYSTEM DESCRIPTION AND SIGNALS
PRELIMINARIES

In this paper, the true system considered for identification
that generates the data is a single-input single-output linear
stable system with the following mathematical description:{

y(t) = G0(q)u0(t)

u(t) = u0(t) + ũ(t),
(1)

where q is the forward shift operator and G0(q) is the
process’ transfer function, that can be expanded as

G0(q) =

∞∑
k=0

g0(k)q−k, (2)

with g0(k) representing the k-th coefficient of its impulse
response. The signals y(t) ∈ R and u(t) ∈ R represent
the system’s measured output and input signals, respectively,
while u0(t) ∈ R is the input that actually excites the process
and ũ(t) ∈ R represents the input noise that contaminates
the measure. Both u0(t) and ũ(t) are considered to be
quasi-stationary signals, in the same sense as introduced and
explored in [10], with ũ(t) also being considered a Gaussian
distributed white noise with zero mean and variance denoted
by σ2

ũ. Furthermore, both signals are presumed to be uncorre-
lated, i.e.: Ē

[
u0(t+τ)ũ(t)

]
= 0, ∀τ , where Ē

[
·
]

is defined
as in [10]: Ē

[
x(t)

]
, limN→∞

1
N

∑N
t=1E

[
x(t)

]
, and it’s an

important operator in the analysis of quasi-stationary signals,
while E

[
·
]

denotes the traditional expected value operator.
It’s worth mentioning that the system addressed in this

work can be seen as a particular case of an EIV dynamic
system, with the main difference that in (1) the output noise
is absent, while in a typical errors-in-variables problem, the
effect of the output noise is usually taken into consideration.
Additionally, the main motivation to study a system as (1)
is that it can represent some data-driven control problems,
as the Virtual Reference Feedback Tuning (VRFT) [11] with
open-loop data, which is a very popular and disseminated
DDC method.
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III. SYSTEM MODEL AND ELEMENTARY
METHODS

Since the main purpose of this work is to identify the
impulse response of G0(q), the process model can be defined
as a Finite Impulse Response (FIR) model:

G(q, θ) =

n∑
k=0

g(k)q−k, (3)

where g(k) represents the impulse response coefficients.
Certainly, this is the simplest approach to estimate G0(q)
[4], where the expansion demonstrated in (2) is truncated at
a finite number of coefficients. In this scenario, it’s possible
to notice that if G0(q) describes a stable system, then its
impulse response decays to zero. So, an n-th order FIR model
can comprehend a good approximation to it.

From the model category chosen to describe the process,
a prediction of the output can be achieved with linear
regression:

ŷ(t) = ϕ(t)T θ, (4)

where ŷ(t) denotes the predicted output, ϕ(t) ∈ Rn denotes
the regressor vector, and θ ∈ Rn denotes the parameter
vector, which represent the system’s impulse response co-
efficients:

ϕ(t) =
[
u(t) u(t− 1) u(t− 2) . . . u(t− n)

]T
, (5)

θ =
[
g(0) g(1) g(2) . . . g(n)

]T
. (6)

Finally, a very important assumption that is presumed in
this paper and in most of the system identification literature
to simplify the statistical and quality analysis of the estima-
tors is stated in the sequence.

Assumption 1: The true process G0(q) belongs to the
model structure G(q, θ), i.e. ∃θ0 : G(q, θ0) = G0(q).

When Assumption 1 is satisfied, it’s possible to write the
true system as a linear regression as well: y(t) = ϕ0(t)T θ0,
where

ϕ0(t) =
[
u0(t) u0(t− 1) . . . u0(t− n)

]T
, (7)

θ0 =
[
g0(0) g0(1) . . . g0(n)

]T
. (8)

Also, since the signal u0(t) is unknown, the system’s output
can be described, alternatively, as a function of the measured
output u(t) and the input noise ũ(t) [7]:

y(t) = ϕ(t)T θ0 + µ(t), (9)

with µ(t) = −ϕ̃(t)T θ0 and where ϕ(t) can be expressed as
ϕ(t) = ϕ0(t) + ϕ̃(t), with

ϕ̃(t) =
[
ũ(t) ũ(t− 1) . . . ũ(t− n)

]T
. (10)

These alternative expressions and quantities, such as µ(t) and
ϕ̃(t) are essential in the sequence to derive and understand
which elements compose the statistical properties of the
estimators that are addressed in this paper.

In order to identify the linear regression model presented
in (4), using the measured input and output data ZN =

[
u(1), y(1), . . . , u(N), y(N)

]
, this paper discusses two el-

ementary methods alongside its properties in the sequence:
the ordinary least-squares and the basic instrumental variable,
where the latter is extended with the use of regularization.

A. Ordinary least-squares identification

The ordinary least-squares estimate of the parameter vec-
tor θ is defined as the minimizing argument of the sum of
squared equation errors between the model prediction and
the measured output [6], [7]:

θ̂ls = arg min
θ

1

N

N∑
t=1

(
y(t)− ϕ(t)T θ

)2
, (11)

which leads to the following normal equation [7]:

θ̂ls =

[
1

N

N∑
t=1

ϕ(t)ϕ(t)T

]−1 [
1

N

N∑
t=1

ϕ(t)y(t)

]
. (12)

Despite the advantage of being a simple, well-known, and
computationally efficient method, the least-squares identifi-
cation possesses a major drawback in the errors-in-variables
scenario: it produces estimates that are not consistent [7],
i.e., that are biased even when N → ∞. This characteristic
can be undesirable in some system identification problems.

B. Basic instrumental variable identification

To overcome the bias error exposed above, a more ad-
vanced method can be applied to identify the model (4): the
basic instrumental variable, which can be interpreted as a
generalization of the least-squares [7]. The main idea of the
IV method is to rewrite the normal equation as

θ̂iv =

[
1

N

N∑
t=1

ζ(t)ϕ(t)T

]−1 [
1

N

N∑
t=1

ζ(t)y(t)

]
, (13)

where ζ(t) ∈ Rn is known as the instrumental variable
vector, which must satisfy:

Ē
[
ζ(t)ϕ(t)T

]
is invertible, Ē

[
ζ(t)µ(t)

]
= 0, (14)

to guarantee that the IV estimate is consistent, or unbiased
in the limit N →∞ [7].

The instrumental variable vector can be built in several
distinct ways, which can hold different results and different
statistical properties, as discussed in more depth in [7]. How-
ever, this work focus on the instrumental variable produced
with data collected through a second experiment on the
system, which holds a distinct noise realization of ũ(t):

ζ(t) =
[
u2(t) u2(t− 1) . . . u2(t− n)

]T
, (15)

where u2(t) ∈ R denotes the input signal obtained in the
second experiment: u2(t) = u0(t) + ũ2(t), and ũ2(t) is the
different noise realization that is uncorrelated with ũ(t), i.e.
E
[
ũ(t+ τ)ũ2(t)

]
= 0, ∀τ .

Yet, a great disadvantage of the IV identification method is
the large variance error produced by its estimates when the
number of available data is limited. Accordingly, to manage

1593

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 10,2022 at 12:20:19 UTC from IEEE Xplore.  Restrictions apply. 



the bias-variance trade-off between both elementary meth-
ods (LS and IV), this work proposes an optimal regularized
IV method, based on the innovative ideas that have been
arising in the system identification community for impulse
response identification [4], [5], [1].

IV. THE REGULARIZED INSTRUMENTAL
VARIABLE ESTIMATOR

The use of the regularized instrumental variable estimator
was already been applied in the data-driven control literature,
specifically in the VRFT and CbT methods [8], [9]. In
such context, it has been demonstrated that the regularized
instrumental variable estimate is given by

θ̂riv =

[
1

N

N∑
t=1

Pζ(t)ϕ(t) + I

]−1 [
1

N

N∑
t=1

Pζ(t)y(t)

]
,

(16)

where P ∈ Rn×n is known as the regularization matrix. The
estimate produced by (16) can be interpreted as a natural
generalization of the regularized least-squares methods that
are used in state-of-the-art techniques in impulse response
identification [4], [5], [1], in the same sense as the basic IV
is a generalization of the ordinary LS.

Finally, to improve the statistical performance of the
estimator (16) by adjusting the bias-covariance trade-off, the
matrix P must be chosen properly. For such purpose, in [8],
[9], for example, a Bayesian perspective, based on process
data, was introduced for the CbT and VRFT techniques
resulting in better properties if compared to the elementary
methods. Distinctly, the major contribution of this paper is to
find an optimal regularization matrix based on the theoretical
statistical properties of θ̂riv to provide new insights on which
quantities that it depends on and how its structure can be
parametrized in algorithms to compute and to estimate it.

V. ASYMPTOTIC PROPERTIES OF THE
REGULARIZED INSTRUMENTAL VARIABLE

ESTIMATOR

In order to obtain the conditions to calculate the optimal
regularization matrix regarding an estimator quality measure
or criterion, this section exposes the asymptotic statistical
properties of the regularized instrumental variable estimator
(16). These statistical analyses are based on the asymptotic
data scenario, i.e., N → ∞, since it’s a very difficult task
to compute parameter distributions for the general case, as
stated in [10]. Thus, it’s important to emphasize that such
properties can be considered approximations for the finite
data scenario, which are more trustworthy as N increases.

The quality criterion chosen to be minimized in this work
with the use of regularization is the trace of the MSE matrix
since this a wide measure for the estimator quality that
comprehends both the bias and the variance errors. Also, it’s
worth mentioning that a similar approach, that inspired this
idea, was performed in the innovative state-of-the-art papers
[4], [5], regarding impulse response estimation.

So, the definition of the MSE matrix of the RIV estimator
can be expressed by Q(P ) , E

[(
θ̂riv − θ0

)(
θ̂riv − θ0

)T ]
.

Also, this matrix can be associated with the bias and the
covariance errors from: Q(P ) = B(P )TB(P )+V(P ), where
it’s relevant to recall that the bias and the covariance errors
are defined by

B(P ) , E
[
θ̂riv

]
− θ0, (17)

V(P ) , E
[(
θ̂riv − E[θ̂riv]

)(
θ̂riv − E[θ̂riv]

)T ]
. (18)

A. Asymptotic bias of the regularized instrumental variable
estimator

Firstly, it’s shown that the RIV estimator is indeed asymp-
totically biased, or not consistent and that the bias depends
on the choice of the regularization matrix. So, to compute
the bias, the first step is to consider the value θ∗riv , for which
the estimate converges when N →∞:

θ∗riv = lim
N→∞

θ̂riv = (19)

lim
N→∞

[
1

N

N∑
t=1

Pζ(t)ϕ(t)T + I

]−1 [
1

N

N∑
t=1

Pζ(t)y(t)

]
.

(20)

From (20) and from the fact that the signals considered in
this work are all quasi-stationary and ergodic, the asymp-
totic sums can be substituted by the Ē

[
·
]

operator [10]:

θ∗riv =
(
PĒ
[
ζ(t)ϕ(t)T

]
+ I

)−1(
PĒ
[
ζ(t)y(t)

])
. Now,

the relation between the instrumental variable, obtained in
the second experiment, and the regressor vector, from the
first experiment, can be observed: ϕ(t) = ϕ0(t) + ϕ̃(t),
ζ(t) = ϕ0(t) + ϕ̃2(t), and since ϕ0(t), ϕ̃(t) and ϕ̃2(t) are
uncorrelated vectors, Ē

[
ζ(t)ϕ(t)T

]
simplifies to:

Ē
[
ζ(t)ϕ(t)T

]
= Ē

[
ϕ0(t)ϕ0(t)T

]
= R0. (21)

Also, since y(t) = ϕ0(t)T θ0, then:

Ē
[
ζ(t)y(t)

]
= R0θ0. (22)

So, from (21) and (22) the value of θ̂riv can be calculated,
as N → ∞, through θ∗riv =

(
PR0 + I

)−1
PR0θ0, which

results in the following expression for the asymptotic bias
of the regularized instrumental variable: limN→∞ B(P ) =

−
(
PR0 + I

)−1
θ0, where the dependency on the regulariza-

tion matrix becomes explicit.

B. Asymptotic Mean-Square Error matrix for the regularized
instrumental variable estimator

Here, the theoretical asymptotic MSE matrix of the RIV
estimator is briefly demonstrated to determine its dependency
on P and consequently, to optimize its trace. The expres-
sion for such quantity can be obtained with the analysis
on its definition and by using the auxiliary variable X0:
limN→∞Q(P ) = E

[
X0X

T
0

]
, with X0 being defined as:

X0 = lim
N→∞

θ̂riv − θ0, (23)

= lim
N→∞

[
1

N

N∑
t=1

Pζ(t)ϕ(t)T + I

]−1 [
1

N

N∑
t=1

Pζ(t)µ(t)− θ0

]
,

(24)
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recalling that, from (9), µ(t) = y(t)−ϕ(t)T θ0 = G0(q)ũ(t).
With the expression above and with the strong law of large
numbers, the following approximation can be performed:

lim
N→∞

[
1

N

N∑
t=1

Pζ(t)µ(t)T + I

]
→
(
PR0 + I

)
, (25)

which results in:

X0 = lim
N→∞

(
PR0 + I

)−1 [ 1

N

N∑
t=1

Pζ(t)µ(t)T − θ0

]
.

(26)

From such approximation, the asymptotic expression for
Q(P ) can be calculated through:

lim
N→∞

Q(P ) =
(
PR0 + I

)−1
E
[
XinX

T
in

](
R0P

T + I
)−1

,

(27)

with

Xin = lim
N→∞

[
1

N

N∑
t=1

Pζ(t)ϕ(t)T − θ0

]
. (28)

Finally, to summarize, it can be observed that E
[
XinX

T
in

]
can be calculated as E

[
XinX

T
in

]
= PWPT + θ0θ

T
0 , where

W = lim
N→∞

E

[
1

N2

N∑
t=1

N∑
s=1

ζ(t)µ(t)µ(s)ζ(t)T

]
, (29)

and it’s possible to demonstrate that W can be computed as
[7]

W = lim
N→∞

σ2
ũ

N

{
Ē
[(
G0(q)ϕ0(t)

)(
G0(q)ϕ0(t)

)T ]
+

Ē
[(
G0(q)ϕ̃2(t)

)(
G0(q)ϕ̃2(t)

)T ]}
, (30)

which leads to the final expression for the MSE matrix of
the θ̂riv estimator:

lim
N→∞

Q(P ) =(
PR0 + I

)−1(
PWPT + θ0θ

T
0

)(
R0P

T + I
)−1

. (31)

Additionally, considering that the expression for Q(P )
is legitimate for the asymptotic MSE scenario, it can be
approximated for a finite amount of data by the following ex-
pression: Q̄(P ) =

(
PR0 + I

)−1(
PW̄PT + θ0θ

T
0

)(
R0P

T +

I
)−1

, with

W̄ =
σ2
ũ

N

{
Ē
[(
G0(q)ϕ0(t)

)(
G0(q)ϕ0(t)

)T ]
+

Ē
[(
G0(q)ϕ̃2(t)

)(
G0(q)ϕ̃2(t)

)T ]}
. (32)

VI. THE OPTIMAL REGULARIZATION MATRIX
As mentioned before, this work seeks the regularization

matrix that optimizes the trace of the MSE matrix, which
can be formulated as the following mathematical problem:

P0 = arg min
P

tr
[
Q̄(P )

]
, (33)

where the solution is obtained by computing the derivative
of tr

[
Q̄(P )

]
with relation to P and solving the following

matrix equation:

∂tr
[
Q̄(P )

]
∂P

= 0. (34)

From matrix calculus and the following matrix identities:{(
R0P

T + I
)−T

=
(
PR0 + I

)−1
,(

PR0 + I
)−T

=
(
R0P

T + I
)−1

,
(35)

the derivative exposed in (34) has a certain degree of
symmetry and results in

R0

(
PR0 + I

)−1(
θ0θ

T
0 + PW̄PT

)
− W̄PT = 0. (36)

Furthermore, after some algebraic manipulation, it can be
noticed that (36) has the following unique solution:

P0 = θ0θ
T
0 R0W̄

−1. (37)

Now, from the theoretical expression exposed in (37),
some conclusions about P0’s structure and properties can be
drawn. Initially, it’s fundamental to realize that P0 depends
on unknown quantities, as θ0, R0 and W̄ , and so, in practical
situations, it can’t be computed and used directly. Still, it can
be noticed that P is such that θTPθ > 0, ∀θ ∈ R.

The expression (37) and the characteristics highlighted
above are relevant because they provide new insights and new
ideas for possible parametrization structures, for example, in
novel algorithms to estimate P0 in practical identification
problems.

Also, if desired by the user, some restrictions can be
imposed in the optimization problem (33), such as the
symmetry of the regularization matrix, for example, which
reduces the number of free parameters. In this context, the
problem can be rewritten asP0s = arg min

P
tr
[
Q(P )

]
,

s.t. P = PT .
(38)

In (38), however, the aforementioned symmetry in the deriva-
tives is not present. So, the matrix identities (35) can’t be
applied to simplify the problem, leading to a more complex
matrix equation:(

θ0θ
T
0 R0R0 −W

)
P + P

(
R0R0θ0θ

T
0 −W

)
−

P
(
WR0 +R0W

)
P +

(
R0θ0θ

T
0 + θ0θ

T
0 R0

)
= 0.

(39)

that can be found after some of degree of algebraic manipu-
lation, that will not be presented here due to the lack of space
to develop such calculations. The equation (39) is actually
a Riccati equation, which is very popular in control systems
literature and possesses a wide range of solvers available to
compute its solution.
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VII. NUMERICAL EXAMPLE

This section elaborates a numerical example to show the
efficiency of the optimal RIV method in comparison to
the elementary ones under the context of errors-in-variables
impulse response estimation. Nonetheless, it’s essential to
recall that these results can just be interpreted as higher or
lower bounds, since P0 and P0s are based on theoretical
solutions and unknown quantities for (33) and (38). The
estimation of these matrices and their comparison with the
optimal case in practical identification situations will be
addressed in future works.

The process considered for estimation in this example has
the same structure as described in (1), where G0(q) is an FIR
filter with n = 35 coefficients, that represents the truncated
impulse response of the following Butterworth filter:

Giir(q) =
0.02008q2 + 0.04017q + 0.02008

q2 − 1.561q + 0.6414
. (40)

The same system was also used as an example on [1].
The input signal u0(t) applied to excite the system was
a square wave that oscillates between [0, 1], with period
Tsq = 100 samples, and the noise signal ũ(t) generated
to corrupt the measure was chosen as a Gaussian distributed
white noise with zero mean and variance σ2

ũ = 0.025. These
choices result in a signal-to-noise ratio of 10.

The system was simulated through 1000 Monte Carlo runs
and N = 2500 data samples were collected in each run to
perform the identification with the elementary methods and
the RIV with both P0 and P0s. To compare all methods,
some metrics were evaluated, where the first one concerns
the statistical properties produced by each one. Regarding
these results, Table I demonstrates the bias norm, the trace
of the covariance matrix and the trace of the MSE matrix
that were obtained in the simulations.

TABLE I
COMPARISON BETWEEN BIAS VECTOR NORM, TRACE OF THE

COVARIANCE MATRIX AND TRACE OF THE MSE MATRIX PRODUCED BY

EACH IDENTIFICATION METHOD.

||B||2 tr(V) tr(Q)
LS 4.1994× 10−2 1.2347× 10−4 1.8893× 10−3

IV 2.6787× 10−3 3.1117× 10−3 3.1149× 10−3

RIV+P0 6.3279× 10−5 2.7717× 10−6 2.7758× 10−6

RIV+P0s 6.5161× 10−5 2.7954× 10−6 2.7996× 10−6

Table I shows that, with the use of the optimal regu-
larization matrices, the RIV method yields the best results
for the trace of the MSE, where the difference between
using P0 and P0s was relatively small. The same table also
shows that the norm of the bias vector was larger for the
least-squares method (which was an expected result) and
that for the regularized ones, such norm was significantly
small. It’s worth mentioning, that the bias achieved by the
IV estimator was quite large due to the limited number of
data samples, Monte Carlo runs, and its large covariance
error. Regarding the trace of the covariance matrix, Table I
shows that the IV estimates held the larger value for this

quantity (also an expected result), and with the use of the
optimal regularization, this property has been considerably
enhanced in the RIV technique, as desired.

Another interesting analysis that was performed in this
work involves a comparison between the impulse responses
that were estimated in each Monte Carlo run. This compari-
son provides a good visual idea of what was accomplished by
each method. Within this purpose, Fig. 1 exhibits all the 1000
estimated impulse responses for the ordinary least-squares
and basic instrumental variable methods and Fig. 2 exhibits
the same graphics for the regularized instrumental variable
estimator with P0 and P0s respectively. These graphics
demonstrate the effect of the bias error on the LS estimated
impulse responses as long as the effect of the large variance
error for the IV estimated responses and the improvement
with the use of the optimal RIV.

Fig. 1. Comparison of the estimated impulse responses with the elementary
methods: least-squares and instrumental variable. Blue solid lines represent
each one of the estimated impulse responses and the red dashed line
represents the true impulse response of the process.

Finally, the last criterion to compare the results achieved
in this work is the distribution of a fit measure of the impulse
response estimations. The same measure was also applied in
the classical regularization works [4], [5] and it consists in

F =

[
1−

( ∑n
k=0 |g0(k)− ĝ(k)|2∑n
k=0 |g0(k)− ḡ0(k)|2

)1/2
]
, (41)

with ḡ0 = 1
n

∑n
k=0 g0(k), where F ≈ 1 means a good fit

between the estimated and the true impulse response. The
boxplot of this measure is exhibited, for each method, in
Fig. 3.

Fig. 3 demonstrates that the LS method produced a fit
distribution with a smaller median in comparison with the
others, which is a direct consequence of the method’s bias
error. Fig. 3 also demonstrates that the IV method produced a
fit distribution with a higher median, closest to one, but with
larger variance and with several outliers, which isn’t a very
good result as well. On the other hand, the boxplot graphic
shows that the fit measure for the optimal RIV methods
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Fig. 2. Comparison of the estimated impulse responses with the regularized
instrumental variable method: optimal and symmetrical optimal regulariza-
tion matrices. Blue solid lines represent each one of the estimated impulse
responses and the red dashed line represents the true impulse response of
the process.

+14

Fig. 3. Boxplot of the 1000 fits obtained on the Monte Carlo runs for
each errors-in-variables identification method.

achieved a median very close to 1 with a small variance
as well, which is a very good result.

To conclude the analysis, the numerical example confirms,
through a series of comparisons and analysis, that the optimal
RIV method produce better impulse response estimation
if compared to the elementary methods regarding several
distinct criteria. In addition, the use of the P0 and P0s

demonstrates an optimal bound on the use of regularization
for the IV method in this context, as they can’t be used in
practical identification scenarios for depending on unknown
quantities.

VIII. CONCLUDING REMARKS

In conclusion, this work has demonstrated the theoreti-
cal expression for the unconstrained optimal regularization
matrix and the Riccati equation that produces the optimal
symmetric matrix for the estimator described in (16). The
achieved results demonstrated that the optimal matrices de-

pend on some knowledge about the process, which is actually
unavailable for practical applications. However, the results
provide a bound of the use of regularization along with useful
and enlightening ideas regarding these matrices structures
and their main characteristics. Such new insights could be
used to further parametrize and estimate the optimal matrices
in practical EIV identification problems.

The numerical example also demonstrated the effective-
ness of the optimal regularization matrices comparing their
use with the traditional and elementary EIV identification
methods: IV and LS. The example exhibited that the optimal
RIV produces better results in several criteria comparisons,
as some statistical quantities based on the Monte Carlo sim-
ulations, the comparison of the impulse responses obtained
by each method and the FIT error metric, which is widely
employed in system identification literature.

Nevertheless, there are still some work and some research
to be further explored and develop in this theme. One
possible research topic, for example, is the extension of this
work to a more general EIV system description with colored
input and output noise. Another relevant idea to explore in
this field may be the estimation of the regularization matrix
from data, which is an essential matter for the practical
application of the RIV method. This estimation could be
performed through a bayesian interpretation of the problem,
as in classical regularization works [4], [5], as well as some
new and interesting deep learning algorithms, as the one
exhibited in [12].
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