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Abstract— This paper addresses the use of the regularization
feature on impulse response estimation for systems with colored
output noise. Firstly, it is shown that the optimal regularization
matrix for this scenario is quite different than the optimal
for the white noise case and that there is a direct relation-
ship between the Regularized Weighted Least-Squares with a
Bayesian perspective of the identification problem for such case.
Also, a new Empirical Bayes method, based on the Bayesian
perspective, is introduced to estimate the regularization and
noise covariance matrices from data. Finally, a numerical
example demonstrates that this new methodology outperforms
the traditional Regularized Least-Squares, producing better
statistical properties and better results for a model fit measure.

I. INTRODUCTION

The study of System Identification has its origins on the
field of Statistics and it deals with the problem of modeling
dynamic systems based on observed data [1]. Particularly,
within the Control Systems field, there is a continuous
demand for model quality improvement in order to reduce
the system’s uncertainties and result in higher efficiency and
better control loop performances.

That being said, over the past decade, a new paradigm
has been emerging in the System Identification literature,
based on recent and brilliant ideas that were brought from the
Machine Learning community, and exposed in [2], [3], which
are deeply connected to the use of regularization on impulse
response estimation methods [4], [5]. As stated in [5], the
great advantage of these new regularized methodologies is
that they can outperform the classical system identification
paradigm of Prediction Error Methods (PEM), producing a
better bias-variance trade-off on estimated models.

Up until this moment in this new regularized system
identification context, in order to identify the process’ model,
the noise transfer function is usually considered as a unitary
gain, which means that the output noise is usually considered
as white noise, a condition that seems fairly restrictive. How-
ever, when the noise filter assumes a rational transfer function
structure, which means that the output noise is colored,
the current regularized approach is to identify the process’
optimal predictor using a FIR (Finite Impulse Response)
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MISO (Multiple-Input Single-Output) model [6], instead of
the process’ model itself, which can be an essential feature
for some kind of applications such as model-based controller
design.

Based on this scenario, this work addresses the anal-
ysis of the regularized impulse response identification of
the process’ model when the system is contaminated with
output colored noise, which can be considered as more
wide an generic formulation for the regularized identification
problem. We propose a theoretical analysis on the optimal
regularization matrix, alongside with new ideas to solve the
problem, which are based on the Bayesian perspective for
system identification, and that results on the use of the
Regularized Weighted Least-Squares (RWLS) method and
the Empirical Bayes to estimate some prior information
concerning the system and the noise characteristics.

This work is organized as follows. Section II presents
the current state-of-the-art regularized algorithm for impulse
response estimation along with its properties and the differ-
ences that emerge by considering the colored noise scenario.
In the sequence, Section III demonstrates the RWLS method,
and its properties, and Section IV demonstrates the Bayesian
perspective of impulse response estimation. In Section V,
hyperparameters estimation are discussed for the regulariza-
tion and the noise covariance matrices, and in Section VI
a numerical example is presented. Finally, section VII ends
the paper with the concluding remarks.

II. REGULARIZED LEAST-SQUARES FOR IMPULSE
RESPONSE ESTIMATION

The regularized least-squares identification technique aims
to identify the typical SISO (Single-Input Single-Output)
linear time-invariant system, described by [1]

y(t) = G0(q)u(t) +H0(q)e(t) (1)

where q represents the forward-shift operator, y(t) ∈ R
denotes the system’s measured output, G0(q) represents its
true transfer function, u(t) ∈ R is the system’s input signal,
H0(q) represents the noise model and e(t) ∈ R is a zero-
mean white noise signal with variance denoted by σ2

e . Also,
the expansion of G0(q) and H0(q) on q−1 results in

G0(q) =

∞∑
k=1

g0(k)q−k (2)

H0(q) = 1 +

∞∑
k=1

h0(k)q−k, (3)
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with H0(∞) = 1 [1], and where g0(k) and h0(k) represent
the k-th coefficients of process and noise impulse responses.

The model structure considered in the regularized impulse
response identification scenario is a FIR model1 [4], [6]:

G(q, θ) =

n∑
k=1

g(k)q−k, (4)

where g(k) represents the impulse response coefficients of
the model and n denotes its order. Such model belongs to
a category of linear regression models, where the predicted
system’s output can be described as

ŷ(t) = ϕ(t)T θ, (5)

with ϕ(t) ∈ Rn being the regressor vector and θ ∈ Rn the
parameter vector:

ϕ(t) =
[
u(t− 1) u(t− 2) . . . u(t− n)

]T
, (6)

θ =
[
g(1) g(2) . . . g(n)

]T
. (7)

Most theoretical analysis of the model assumes that it
can describe the true transfer function, such that the next
assumption is respected.

Assumption 1: The true process’ transfer function G0(q)
belongs to the chosen model structure G(q, θ). This means
that there exists θ0 such that G(q, θ0) = G0(q).

When Assumption 1 is satisfied then the true system
presented in (1) can be described by the following linear
regression:

y(t) = ϕ(t)θ0 + v(t), (8)

with θ0 =
[
g0(1) g0(2) . . . g0(n)

]T
and v(t) =

H0(q)e(t)
The Regularized Least-Squares (RLS) estimation for the

FIR model exposed above is very similar compared to the
traditional least-squares method but with the addition of a
quadratic regularization term [4], [6]

θ̂R = arg min
θ

(Y − Φθ)
2

+ θTP−1θ, (9)

θ̂R =
(
PΦTΦ + I

)−1 (
PΦTY

)
, (10)

where P ∈ Rn×n is the regularization matrix and with Φ ∈
RNt×n and Y ∈ RNt being written as

Φ =
[
ϕ(n+ 1) ϕ(n+ 2) . . . ϕ(N)

]T
, (11)

Y =
[
y(n+ 1) y(n+ 2) . . . y(N)

]T
. (12)

It can be noticed that the vector Y can be written as

Y = Φθ0 + V, (13)

with V =
[
v(n+ 1) v(n+ 2) . . . v(N)

]T ∈ RNt .
As demonstrated in [4], [6], the greatest advantage of the

regularized impulse response estimation provided by (10) is
that the matrix P balances the variance and the bias error

1This model could be generalized with the addition of the input delay
without loss of generality under the method’s properties and analysis.

in order to achieve better identification properties, especially
concerning the Mean-Square Error (MSE) matrix.

In this work, we will expand the results [4], [6] to include
systems with colored output noise. We will present expres-
sions for bias, variance and MSE of the estimate along with
an analysis of the optimal regularization matrix. We will also
show that there is a close relation between the Regularized
Weighted Least-Squares estimate and the Bayesian estimate,
such that the Empirical Bayes method can be used to estimate
both regularization and weight matrices.

A. MSE error for RLS

To quantify the error between the estimate and the true
parameter value the MSE matrix is a reasonable measure
[4]:

QR(P ) = E

[(
θ̂R − θ0

)(
θ̂R − θ0

)T]
, (14)

which comprehends both the bias and the covariance errors
as [4], [6]

QR(P ) = BR(P )BR(P )T + VR(P ), (15)

where BR(P ) denotes the bias error and VR(P ) the variance
error:

BR(P ) = E[θ̂R]− θ0, (16)

VR(P ) = E

[(
θ̂R − E[θ̂R]

)(
θ̂R − E[θ̂R]

)T]
, (17)

which are all functions of the regularization matrix P .
For the estimator considered in this paper, presented

in (10) and considering that H0(q) is a rational transfer
function, the expected value of θ̂R can be computed using
the fact that Y = Φθ0 + V as follows:

E[θ̂R] = E
[
(PR+ I)

−1
PRθ0

]
+ E

[
(PR+ I)

−1
PRV

]
,

E[θ̂R] = (PR+ I)
−1
PRθ0, (18)

with R = ΦTΦ and because E[V ] = 0. From this result, the
following expression for the bias error can be achieved:

BR(P ) = − (PR+ I)
−1
θ0. (19)

The covariance of the referred estimate can be obtained in
a similar procedure. It can be seen, for this scenario, that

θ̂R − E[θ̂R] =
(
PΦTΦ + I

)−1
PΦTY−(

PΦTΦ + I
)−1

PΦTΦθ0, (20)

θ̂R − E[θ̂R] =
(
PΦTΦ + I

)−1
PΦTV, (21)

then, it can be seen from (17) that VR(P ) is given by

VR(P ) = (PR+ I)
−1 (

PΛPT
) (
RPT + I

)−1
, (22)
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with

Λ = ΦTΣΦ, (23)

Σ = E
[
V V T

]
(24)

Σ =


rvv(0) rvv(1) . . . rvv(Nt − 1)
rvv(−1) rvv(0) . . . rvv(Nt − 2)

...
...

. . .
...

rvv(−Nt + 1) rvv(−Nt + 2) . . . rvv(0)

 ,
(25)

with rvv(τ) being the autocorrelation function of v(t), i.e.

rvv(τ) = E [v(t+ τ)v(t)] . (26)

Now, from the bias and the covariance errors exposed above,
the MSE error matrix can be computed from (15), producing
the following result:

QR(P ) = (PR+ I)
−1 (

θ0θ
T
0 + PΛPT

) (
RPT + I

)−1
,

(27)

which is a more generic expression compared with the one
achieved in [4], [6] which is specific for white output noise.

B. Optimal regularization matrices

Expression (27) makes it clear that the MSE depends on
the regularization matrix P such that an optimal matrix can
be computed. We propose to minimize the trace of the MSE
matrix (27), such that:

P0cn = arg min
P

tr [QR(P )] . (28)

The solution for the problem above is reached through the
following matrix equation

∂tr [QR(P )]

∂P
= 0, (29)

which can be computed with matrix calculus:

∂tr [QR(P )]

∂P
= −RL−11

(
θ0θ

T
0 + PΛPT

)
L−12 L−11 +

ΛPTL−12 L−11 + ΛPTL−
T

1 L−T2 −
RL−T2

(
θ0θ

T
0 + PΛPT

)
L−T1 L−T2 , (30)

with L1 = (PR + I) and L2 = (RPT + I), which can be
simplified by using the following matrix symmetries:
(
RPT + I

)−T
=
[(
RPT + I

)T ]−1
= (PR+ I)

−1
,

(PR+ I)
−T

=
[
(PR+ I)

T
]−1

=
(
RPT + I

)−1
.

(31)

to hold:
∂tr [QR(P )]

∂P
= −2RL−11

(
θ0θ0 + PΛPT

)
L−12 L−11 +

ΛPTL−12 L−11 .
(32)

Now, using the expression (32) and some degree of matrix
algebra, the solution to (29) can be found as

P0cn = θ0θ
T
0 RΛ−1. (33)

Observe that if the noise is white (H0(q) = 1), then Λ =
σ2
eR and

P0cn =
θ0θ

T
0

σ2
e

(34)

which is the solution demonstrated in [4], [6] for white output
noise, such that (33) is a generalization of the optimal matrix
presented there.

Observe that also that P0cn is a semi-definite matrix with
only one positive eigenvalue (the other are all equals to
zero), and it depends on unknown quantities in practical
applications, such as θ0 and Σ.

III. REGULARIZED WEIGHTED LEAST-SQUARES FOR
IMPULSE RESPONSE ESTIMATION

As an alternative to identify the impulse response and
establish a connection with the Bayesian perspective for
the colored output noise scenario, the Regularized Weighted
Least-Squares algorithm must be studied. The RWLS es-
timate is computed by solving the following optimization
problem:

θ̂RW = arg min
θ

||(Y − Φθ)||2M + θTP−1θ, (35)

where ||x||2M denotes the quadratic norm xTMx, with M ∈
RNt×Nt being the weighting matrix and P the aforemen-
tioned regularization matrix. Finally, the solution to the
problem above results in the following parameter estimate:

θ̂RW =
(
PΦTMΦ + I

)−1
PΦTMY. (36)

A. MSE error for RWLS

Following the same idea exposed in previous sections, it’s
important to compute the MSE error matrix for the RWLS
estimate, in order to further optimize it in some sense with
the use of regularization and also to get new insights on P ’s
optimal structure and dependencies. To do so, the bias and
covariance errors are, again, used as follows:

QRW (P ) = BRW (P )BRW (P )T + VRW (P ), (37)

where

BRW (P ) = E[θ̂RW ]− θ0, (38)

VRW (P ) = E

[(
θ̂RW − E[θ̂RW ]

)(
θ̂RW − E[θ̂RW ]

)T]
.

(39)

Using the same procedure as before, the expected value
for θ̂R is calculated as

E[θ̂RW ] = E
[(
PΦTMΦ + I

)−1
PΦTMΦθ0

]
+

E
[(
PΦTMΦ + I

)−1
PΦTMΦV

]
, (40)

E[θ̂RW ] =
(
PΦTMΦ + I

)−1
PΦTMΦθ0, (41)

So, from the above expression for the expected value of the
RWLS estimate, the bias can be found as

BR(P ) = −
(
PΦTMΦ + I

)−1
θ0. (42)
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Also, the covariance of the RWLS estimate is found similarly
as before. Firstly, the following difference is taken:

θ̂RW − E[θ̂RW ] =
(
PΦTMΦ + I

)−1
PΦTMY−(

PΦTMΦ + I
)−1

PΦTMΦθ0, (43)

θ̂RW − E[θ̂RW ] =
(
PΦTMΦ + I

)−1
PΦTMV, (44)

then, it results in the variance error given by:

VRW (P ) =
(
PΦTMΦ + I

)−1
W
(
ΦTMTΦPT + I

)−1
,

(45)

with W = PΦTMΣMTΦPT , and where, finally, the MSE
error is achieved:

QRW (P ) =(
PΦTMΦ + I

)−1 (
θ0θ

T
0 +W

) (
ΦTMTΦPT + I

)−1
.

(46)

IV. THE BAYESIAN PERSPECTIVE

The Bayesian perspective of the impulse response esti-
mation is quite different from the traditional system iden-
tification perspective, but it’s essential to produce ideas
for the estimation of the regularization matrix and the use
of the Regularized Least-Squares method. In the Bayesian
perspective, the true parameter vector θ itself is considered
a gaussian distributed random variable, with zero mean and
covariance matrix denoted by Π, i.e. [4], [6]:

θ ∼ N (0,Π) , (47)

which differs from the traditional identification perspective,
where θ is considered deterministic but unknown. So, if
(47) holds and the system’s output noise is considered as
gaussian and colored, then, the output vector Y and the
parameter vector θ can now be described as two jointly
gaussian variables as[

θ
Y

]
=

([
0
0

]
,

[
Π ΠΦT

ΦΠ ΦΠΦT + Σ

])
. (48)

The parameter estimate from this stochastic point of
view can be accomplished by maximizing the conditional
distribution of θ given that the output Y is measured from
the process, which represents the posterior distribution of θ
given Y, and that can be obtained with Bayes theorem. For
jointly gaussian variables the posterior distribution is well-
known [7]:

θ|Y ∼ N
(
θ̂B ,ΠB

)
, (49)

θ̂B =
(
ΠΦTΣ−1Φ + I

)−1
ΠΦTΣ−1Y, (50)

ΠB = Π−ΠΦT
(
ΦΠΦT + Σ

)−1
ΦΠ, (51)

where the Bayesian parameter estimate is denoted by θ̂B .
Now, comparing (50) and (36) it becomes evident that the

regularized weighted leas-squares estimates is equivalent to
the Bayesian one with the regularization matrix is chosen
as P = Π and the weighting matrix chosen as M = Σ−1

regarding the colored output noise scenario for the impulse
response identification.

In the white output noise scenario, addressed in [4], [6],
the Bayesian identification perspective produces a direct
relationship with the Regularized Least-Squares estimates,
where it can be seen that both methodologies are equivalent
by choosing P = Π. However, observing the Bayesian
estimate (50) for the colored output noise case, it’s not
possible to achieve a direct relation between the Regularized
Least-Squares estimate (10) and the Bayesian perspective one
(50). To do so, we must refer to the Regularized Weighted
Least-Squares.

V. EMPIRICAL BAYES METHOD FOR REGULARIZATION
AND NOISE COVARIANCE MATRICES ESTIMATION

As demonstrated in [4], the estimation of the regularization
matrix P and the covariance matrix Σ from data is performed
with the Empirical Bayes method [8], observing the marginal
distribution of Y from (48), and using a set of hyperparam-
eters β =

[
ηT ζT

]T
:

Y ∼ N
(
0,ΦΠ(η)ΦT + Σ(ζ)

)
. (52)

From this gaussian distribution, a Marginal Likelihood Max-
imization problem can be formulated to estimate β:

β̂ = arg min
β

(
Y TΨ(β)−1Y + ln |Ψ(β)|

)
, (53)

with

Ψ(β) = ΦΠ(η)ΦT + Σ(ζ). (54)

The Marginal Likelihood Maximization expressed above is
also fairly similar to the ones proposed on the classical
regularization works [4], [6], with the main difference that
in our work, the estimation of Σ is held alongside with Π
and it plays an important role for the RWLS method.

Furthermore, each matrix Π and Σ has a different inter-
pretation and so, possesses its own parametrization structure.
For Π, since it represents the covariance of the system’s
impulse response coefficients, it should reflect exponential
decay and positive correlation among its parameters, for ex-
ample. So, typical parametrization structures for this matrix
are the following [4], [6]:
• Diagonal/Correlated (DC):

Πkj(η) = λα(k+j)/2ρ|k−j|, (55)

with λ > 0, 0 < α < 1 and |ρ| < 1;
• Tuned/Correlated (TC):

Πkj(η) = λmin(αk, αj), (56)

with λ > 0, 0 < α < 1.
On the other hand the matrix Σ is a Toeplitz matrix that

represents the covariance of the vector V , as exposed in
(25). So, in our work. we choose to identify Σ−1 on the
Marginal Maximum Likelihood problem, since it can be
easily parametrized as:

Σ−1(ζ) = S(ζ)S(ζ)T , (57)
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where

S(ζ) =



ζ1 ζ2 . . . ζm 0 . . . . . . 0
0 ζ1 ζ2 . . . ζm 0 . . . 0
... 0

. . . . . . . . . . . .
...

...
0 . . . 0 ζ1 ζ2 . . . ζm 0
0 . . . . . . 0 ζ1 ζ2 . . . ζm
0 . . . . . . . . . 0 ζ1 ζ2 . . .
0 . . . . . . . . . . . . 0 ζ1 ζ2
0 . . . . . . . . . . . . . . . 0 ζ1


, (58)

which comprehend a typical inverse of Σ when H0(q) is a
generic m order IIR filter with no zeros.

Additionally the cost function of the optimization problem
(53) is ill-conditioned and has a complex structure which can
produce inaccurate results for the hyperparameter estimation
[9]. In [9], however, there are some alternatives to compute
such cost function efficiently and in this paper some adap-
tations were made to implement those algorithms for the
colored noise scenario addressed here.

VI. NUMERICAL EXAMPLE

In order to compare our new RWLS algorithm for the
colored noise scenario, the RLS proposed for the white
noise scenario in [4], [6], and the classical LS method for
impulse response estimation when H(q) 6= 1, this section
demonstrates a numerical example. The system considered
for identification here has the following structure:

y(t) =
0.1

q − 0.9︸ ︷︷ ︸
G0(q)

u(t) +
q

q − 0.95︸ ︷︷ ︸
H0(q)

e(t), (59)

where the main objective is to identify the n = 60 impulse
response coefficients of G0(q). The experimental conditions
for the comparison are similar to one case proposed in [4],
where N = 500 data samples are collected in each Monte
Carlo run and the Signal-to-Noise Ratio (SNR) is equal to 10,
which holds σ2

u = 190 and σ2
w = 0.0975. The system was

simulated through 1000 Monte Carlo runs and some metrics
were evaluated to compare the methods.

The first comparison in this paper regards the bias norm
and the trace of the covariance and the MSE matrices
achieved by each method on the Monte Carlo simulations.
Such results are exhibited in Table I, which compares those
metrics for the classical LS method, the RLS method pro-
posed in [4], and our new RWLS algorithm with the TC
and DC parametrization. The main aspect that can be seen
in Table I is that our new algorithm was able to reduce the
trace of the MSE and the covariance matrices in comparison
with the RLS method developed in [4].

Another analysis performed to compare each method is
the comparison of the impulse responses achieved in each
Monte Carlo run of the RLS and the RWLS methods with the
DC parametrization, which gives a sample of what happens
with the estimated impulse responses for each method. Fig.
1 demonstrate the 1000 estimated impulse responses with
the RLS method and Fig. 2 demonstrate the 1000 estimated
impulse responses with the RWLS method, both with the

Fig. 1. Comparison of the true impulse response with the ones obtained
by the RLS method with DC parametrization and classical hyperparameter
estimation.

DC paramatrization structure and its own hyperparameter
estimation method.

Comparing both Figures, it can be noticed that the RWLS
method proposed here presents better results, since its av-
erage impulse response is very similar to the true system’s
impulse and its covariance is considerable lower than the one
achieved with the RLS method.

The last criterion used for comparison in this paper is
the distribution of a fit measure between the true impulse
response and the estimated ones on the Monte Carlo analysis.
This same fit measure was also employed in [4], [6] and it
consists on

F = 100

[
1−

( ∑n
k=0 |g0(k)− ĝ(k)|2∑n
k=0 |g0(k)− ḡ0(k)|2

)1/2
]
, (60)

with

ḡ0 =
1

n

n∑
k=0

g0(k). (61)

Then, a good model, close to the true system’s impulse
response would present a fit F ≈ 100. So, Figure 3
demonstrate the boxplot graphic of the distribution of each
fit achieved with all the identification methods compared in
this paper. Firstly, it can be noticed, that the lowest average
fit is achieved with the traditional LS method. Also, it can
be seen that the RWLS method outperform the RLS method
in both parametrization structures (TC and DC) employed
here, since they average fit are higher.

TABLE I
BIAS NORM AND TRACE OF THE COVARIANCE AND MSE MATRICES OF

EACH IMPULSE RESPONSE ESTIMATION METHOD ACHIEVED.

Method ||B||2 tr(V) tr(Q)
LS 0.748× 10−3 0.839× 10−3 8.40× 10−4

RLS DC 1.25× 10−3 0.564× 10−3 5.65× 10−4

TC 1.45× 10−3 0.638× 10−3 6.40× 10−4

RWLS DC 0.610× 10−3 0.208× 10−3 2.09× 10−4

TC 9.68× 10−3 0.398× 10−3 4.92× 10−4
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Fig. 2. Comparison of the true impulse response with the ones obtained
by the RWLS method with DC parametrization and our hyperparameter
estimation.

Fig. 3. Comparison of the boxplots obtained for the fit metric for each
estimation method. Each column represent a different impulse estimation
method.

VII. CONCLUDING REMARKS

This paper had demonstrate new insights to the use of
regularization to identify the system’s impulse response
considering the colored output noise scenario. Firstly, it
was demonstrated that the optimal regularization matrix is
slightly different for the RLS compared to the white noise
scenario. Also, we showed that under this output noise
condition, the Bayesian perspective has a direct association
with the RWLS method, where P = Π and M = Σ−1,
and a new algorithm to estimate both P and Σ using this
perspective, where the latter has a new specific structure of
parametrization.

Finally, the numerical example demonstrates the use of our
new methodology, where it can be seen that it has improved
the impulse response estimation properties, resulting in a
lower trace for the covariance and MSE matrices, compared
to the state-of-the-art regularization techniques and the tra-
ditional least squares method as well as better mean and

variance of the estimated impulse responses and a higher
average value for the fit criterion.
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