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Abstract

This paper deals with Data-Driven (DD) control design in a Model Reference (MR) framework. We present a new DD
method for tuning the parameters of a controller with a fixed structure. Because the method originates from embedding
the control design problem in the Prediction Error identification of an optimal controller, it is baptized as Optimal
Controller Identification (OCI). Incorporating different levels of prior information about the optimal controller leads to
different design choices, which allows to shape the bias and variance errors in its estimation. It is shown that the limit
case where all available prior information is incorporated is tantamount to model-based design. Thus, this methodology
also provides a framework in which model-based design and DD design can be fairly and objectively compared. This
comparison reveals that DD design essentially outperforms model-based design by providing better bias shaping, except
in the full order controller case, in which there is no bias and model-based design provides smaller variance. The
practical effectiveness of the design methodology is illustrated with experimental results.
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1. Introduction

In the past two decades, a number of data-driven (DD) methods have been proposed for control design[1,
2, 3, 4] and for fault diagnosis [5, 6, 7]. In DD control design, a parametrized controller structure is chosen
a priori, and the controller tuning is based directly on input and output data collected on the plant without
the use of a model of this plant. These methods are typically based on the Model Reference (MR) paradigm,
in which the desired closed-loop performance is specified by means of a target closed-loop transfer function
- the Reference Model. Some of these methods, like Iterative Feedback Tuning [1, 2] and Correlation-based
Tuning (CbT) [4] are iterative in nature: the optimal controller is obtained as a sequence of controllers that
operate on the actual plant, and experimental data are collected on the corresponding sequence of closed-
loop plants. Other methods are “one-shot" - that is, non-iterative: they directly estimate the controller
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parameters on the basis of only one batch of input-output data; Virtual Reference Feedback Tuning (VRFT)
[3] and a non-iterative version of CbT [8] are representative of this class. A common theoretical framework
for these data-driven methods is provided in [9].

In this paper we present a new “one-shot” DD control design methodology, which is also based on
the Model Reference paradigm. In our method the input-output model of the system is replaced from the
outset by an equivalent input-output description involving only parameters of the controller. With this new
parametrization, the estimation of the controller parameters is embedded in a completely standard Prediction
Error (PE) identification problem, in which the inverse of the controller is identified. As a consequence, a
complete statistical analysis of the estimated controller can be provided. An immediate consequence of PE
identification theory is that the ideal model reference controller can be identified without bias if the controller
structure chosen for the controller is of full order1, provided that open-loop data are used. The same holds
with closed-loop data provided that a full order noise model is also identified. In the non-ideal case where
the controller structure is not of full order (that is, the specified performance can only be approximated with
this controller structure), the standard results from PE identification can be used to characterize the bias of
the resulting controller.

An inherent property of the MR framework is the existence of an a priori algebraic relationship between
the unknown plant, the known reference model, and the ideal controller (the one that would provide exactly
the desired closed-loop performance). A similar relationship exists between the known reference model,
a parametric model of the plant, and the parametric controller that would provide the desired closed-loop
performance with this model. A major contribution of this paper, in which the controller rather than the
model is identified, is to show that the existence of this relationship and of the desired reference model allows
us to propose a range of possible design choices for the parametrization of the controller. These different
design choices consist of incorporating different levels of prior knowledge about the ideal controller in a
fixed part of the controller structure, resulting in a parametric part of varying complexity. In other words,
the parametric part of the controller, which needs to be estimated by prediction error identification, will have
different numbers of parameters depending on the design choices. These design choices can then be made to
shape the bias and variance of the controller estimate, since bias and variance error depend very much on the
flexibility of the controller structure, i.e. on the number of its parameters. Exploring these design choices
and the resulting statistical properties for each one also provides a framework that allows a meaningful
comparison of DD design with model-based design. With this comparison we show that indirect controller
design - that is, plant identification followed by model-based MR design - can be seen as a particular case of
our design method, in which all available prior knowledge of the ideal controller is included in the design.
We also show that this particular design choice is the one that gives the least variance error, whereas the
least bias error is provided by the opposite choice, in which no prior knowledge is included. In the practical
case of undermodeling, where the controller set does not contain the ideal controller that would produce the
ideal reference model, the bias error dominates the variance error. In such case, our simulations show that
the DD design where no prior knowledge is included in the controller, thus allowing maximal parameter
flexibility for bias shaping, also tends to provide the best average performance, but intermediate choices
may be advisable. Thus, this statistical analysis also makes possible an educated choice of the parameters
to be fixed.

The paper is organized as follows. Definitions and the problem formulation are presented in Section 2.
Section 3 presents the proposed controller tuning method - the OCI, providing the properties of the resulting
controller estimate, as well as the design choices and their consequences in terms of bias and variance. A
detailed simulation case study is presented in Section 4 to illustrate the application of the proposed method
and the design choices. Experimental results in Section 5 show the effectiveness of the design methodology
and the properties of each design choice in a practical setting. Conclusions are presented at the end of the
paper.

1That is, if it is possible to achieve exactly the specified performance with this structure.
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2. Preliminaries

2.1. Background and definitions
Consider a linear time-invariant discrete-time single-input-single-output process

y(t) = G0(z)u(t) + v(t) = G0(z)u(t) + H0(z)e(t), (1)

where z is the forward-shift operator, G0(z) is the process transfer function, u(t) is the control input, H0(z)
is the noise model, and e(t) is zero mean white noise with variance σ2

e . Both transfer functions, G0(z) and
H0(z), are rational. G0(z) is causal, while H0(z) is causal but not strictly causal, with H0(∞) = 1.

This process is controlled by a linear time-invariant controller that belongs to a pre-specified class of
controllers, parametrized in terms of a vector parameter ρ ∈ Dρ ⊆ Rd, where Dρ is a set of admissible
parameters. Specifically, the controller transfer function is C(z, ρ) and the class is defined as C = {C(z, ρ) :
ρ ∈ Dρ ⊆ Rd}. The design task is to tune the parameter vector ρ in order to achieve the desired closed-loop
performance.

We assume that the controller class C is such that C(z, ρ)G0(z) has positive relative degree for all C(z, ρ) ∈
C; equivalently, the closed loop is not delay-free. The control action u(t) can be written as

u(t) = C(z, ρ)(r(t) − y(t)), (2)

where r(t) is a reference signal, which is assumed to be quasi-stationary and uncorrelated with the noise,
that is Ē [r(t)e(s)] = 0 ∀t, s, and

Ē[ f (t)] , lim
N→∞

1
N

N∑
t=1

E[ f (t)]

with E[·] denoting expectation [10]. The system (1)-(2) in closed loop becomes

y(t, ρ) = T (z, ρ)r(t) + S (z, ρ)v(t)

T (z, ρ) =
C(z, ρ)G0(z)

1 + C(z, ρ)G0(z)
= C(z, ρ)G0(z)S (z, ρ)

where we have now made the dependence on the controller parameter vector ρ explicit in the output signal
y(t, ρ).

2.2. Model Reference control
Model Reference control design consists of specifying the desired closed-loop transfer function M(z),

which is known as the reference model, and then solving the following optimization problem for a specified
reference signal r(t):

min
ρ

JMR(ρ) (3)

JMR(ρ) , Ē
[(

C(z, ρ)G0(z)
1 + C(z, ρ)G0(z)

− M(z)
)

r(t)
]2

(4)

s.t. C(z, ρ) ∈ C. (5)

The optimal controller is defined as C(z, ρMR) with ρMR the solution of the problem (3)-(4)-(5). We assume
that the user can collect a batch of data from the process (1)

ZN = [u(1), y(1), . . . , u(N), y(N)].

His/her task is then to estimate the optimal parameters of the controller C(z, ρMR) from these data.
Analyzing (4) we see that if the ideal controller

Cd(z) ,
M(z)

G0(z)(1 − M(z))
(6)
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were used in the closed loop then the objective function (3) would evaluate to zero. However, this ideal
controller may not correspond to any controller in the controller set C; actually in most practical applications
it will not belong to C. For our further analysis, we will sometimes consider the situation where Cd(z) ∈ C,
in which case we shall say that the following assumption holds.

Assumption 1. Matching condition

∃ ρ0 ∈ Dρ such that C(z, ρ0) = Cd(z).

3. Optimal Controller Identification - OCI

3.1. A data-driven design method

By using the concept of the ideal controller, it is possible to turn the model reference control design
problem into an identification problem. In so doing, a specific data-driven design method is obtained [11].
The core idea is to rewrite the input-output system (1) in terms of the ideal controller Cd(z), which is done
by inverting the relation (6), i.e.

G0(z) =
1

Cd(z)
M(z)

1 − M(z)
. (7)

Then a model for the plant can be written in terms of the controller parameters as

G(z, ρ) ,
1

C(z, ρ)
M(z)

1 − M(z)

and the task will be to identify an estimate C(z, ρ̂) of the ideal controller Cd(z) within the parametrized
controller class defined by the set of controllers C = {C(z, ρ), ρ ∈ Dρ ⊆ Rd}.

It is often the case that one imposes some fixed part in the controller, the most common instance of
this fact probably being the imposition of a pole at z = 1 to guarantee zero steady-state error for constant
references and perturbations. This fixed part does not need to be identified. So, we call CF(z) this fixed part
and rewrite the controller transfer function as

C(z, ρ) = CI(z, ρ)CF(z) (8)

where, to make this factorization unique and to facilitate the embedding of our problem into the PE frame-
work, we assume that the numerator of CI(z, ρ) is a monic polynomial.

Now define

C̃(z, ρ) ,
1

CI(z, ρ)
=

CF(z)
C(z, ρ)

, (9)

so that the input-output model can be written as

y(t, θ) =
1

CI(z, ρ)︸   ︷︷   ︸
C̃(z,ρ)

×
M(z)

CF(z)(1 − M(z))
u(t)︸                    ︷︷                    ︸

ũ(t)

+H(z, θ)e(t)

= C̃(z, ρ)ũ(t) + H(z, θ)e(t) (10)

where θ = [ρT ηT ]T and η ∈ Rc is an additional parameter vector appearing in the noise model.

Example 1. Suppose that the controller class C consists of the following

C(z, ρ) =
z2 + ρ3z + ρ4

(z − 1)(ρ1z + ρ2)
(11)
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where the vector ρ = [ρ1 ρ2 ρ3 ρ4]T ∈ R4 contains the parameters to be tuned. We choose the integra-
tor as the fixed part and rewrite, from (11) and (8)

CF(z) =
1

z − 1
, CI(z, ρ) =

z2 + ρ3z + ρ4

ρ1z + ρ2
.

Then the model structure to be identified in (10) will be

C̃(z, ρ) =
ρ1z + ρ2

z2 + ρ3z + ρ4

and we have recast the estimation of the controller in the standard PE framework, where the model structure
C̃(z, ρ) in (10) has a monic denominator.

Once the controller estimation problem has been rewritten as the identification of the inverse of part of
the ideal controller in (10) the controller design proceeds as a standard identification procedure, as follows.
From N measured input-output data one constructs the data vector

ZN
c = [ũ(1), y(1), . . . , ũ(N), y(N)]

and then the estimate θ̂N = [ρ̂T
N η̂T

N]T is given by

θ̂N = arg min
θ

V(θ) (12)

where

V(θ) =

N∑
t=1

ε2(t, θ),

ε(t, θ) is the prediction error
ε(t, θ) , y(t) − ŷ(t|t − 1, θ), (13)

and ŷ(t|t − 1, θ) is the optimal one-step-ahead predictor for model (10):

ŷ(t|t − 1, θ)= H−1(z, θ)C̃(z, ρ)ũ(t)+
[
1−H−1(z, θ)

]
y(t).

Using (8) and (9), the estimated optimal controller is then obtained by

C(z, ρ̂N) =
1

C̃(z, ρ̂N)
CF(z). (14)

So, instead of minimizing JMR(ρ), which depends on the unknown plant G0(z), the design is made by
minimizing the cost function V(θ), which is purely data-dependent and no model of the plant G0(z) is used.
It is worth mentioning that, since the object of interest is the optimal controller only, and not the plant model,
the identification of H0(z) is of no interest per se.

Since the estimation of the optimal MR controller has been transformed into a PE identification problem,
all properties of PE identification theory apply. Specifically, with open-loop data, the estimate in (12)
converges to the vector θ∗ defined as follows:

θ̂N −→ θ∗ = arg min
θ

V̄(θ) (15)

with

V̄(θ) = Ē[ε2(t, θ)] =
1

2π

∫ π

−π

1
|H(e jω, θ)|2

{
|C̃d(e jω) − C̃(e jω, ρ)|2Φũ(ω) + Φv(ω)

}
dω, (16)

where C̃d(z) , CF (z)
Cd(z) , Φv(ω) is the noise spectrum and Φũ(ω) is the spectrum of ũ(t):

Φũ(ω) =
|M(e jω)|2

|CF(e jω)(1 − M(e jω))|2
Φu(ω),
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and Φu(ω) is the spectrum of u(t).
As will be demonstrated later, ρMR is a global minimum of V̄(θ) under Assumption 1 and some excitation

conditions on the data.
When these assumptions are not satisfied, the minima of V̄(θ) and JMR(ρ) are distinct. These minima

could be made closer by a proper filter choice, as is done in the VRFT methodology, or by choosing a
proper reference model. Satisfaction of Assumption 1 depends on both the controller class and the choice of
reference model. It is known that if the user knows some characteristics of the plant, a reference model based
on this knowledge is much more likely to be attained [9]. If the process is non-minimum phase, the non-
minimum phase zeros should be included in the reference model, as in any model reference control design
(see [12], for example). Besides, if the controller class is fixed, there is always a possibility of choosing
a performance that is not too far from what can be achieved considering system limitations. For example,
a PI controller will not be able to provide a settling time that is much faster than the open-loop response,
except for the simplest plants. Considering these limitations when choosing the reference model will yield
a situation where the chosen controller class is closer to the ideal controller. Guidelines on choices of the
reference model such that the PID controller class is close to the ideal controller class are given in [9, 13].

3.2. Consistency of the OCI
In the case of a full order controller we can immediately state consistency results for the controller

estimate, as corollaries of standard PE identification theory [10] applied to (10). To do this, we need to
formalize an assumption on the data.

Assumption 2. Input richness
The filtered input ũ(t) is sufficiently rich to make the experiment informative with respect to the model

structure defined by C̃(z, ρ).

The reader is referred to [14] for the exact richness conditions required to provide informative experiments
for arbitrary model structures.

The first consistency result concerns identification in open-loop and is a Corollary of Theorem 8.4 in
[10].

Theorem 1. Let Assumptions 1 and 2 be satisfied. Moreover, let the data u(t) and y(t) be collected in open
loop and let C̃(z, ρ) and H(z, θ) have disjoint parameters, that is, ∂H(z,θ)

∂ρ
≡ 0. Let θ̂N = [ρ̂T

N η̂T
N]T be defined

by (12). Then ρ̂N → ρ0 w.p. 1 as N → ∞, i.e. with C(z, ρ̂N) defined by (14) we have

C(z, ρ̂N)→ Cd(z).

The same properties hold if the data are collected in closed loop, and if in addition the noise model is
also capable of representing exactly the true noise H0(z). This is formalized in the following result, which
is a Corollary of Theorem 8.3 in [10].

Theorem 2. Let Assumptions 1 and 2 be satisfied. Moreover, let the data u(t) and y(t) be collected in closed
loop and assume that ∃ θ0 such that H(z, θ0) = H0(z), with θ0 = [ρT

0 ηT
0 ]T . Let θ̂N = [ρ̂T

N η̂T
N]T be defined

by (12). Then θ̂N → θ0 w.p. 1 as N → ∞, i.e. with C(z, ρ̂N) defined by (14) we have

C(z, ρ̂N)→ Cd(z)

and
H(z, θ̂N)→ H0(z).

It is important to notice that these consistency properties are valid regardless of the choice of CF(z).
A fundamental aspect of our method, which is common to most known one-shot DD methods [3, 8, 15],
is that JMR(ρ) is hard to optimize and depends on the unknown true plant. It is therefore replaced by the
minimization of another function (in our case V(θ)) which is purely data-dependent, easier to minimize and
which, under ideal conditions, has the same global minimum as JMR(ρ).
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3.3. The fixed part CF(z)
Given the freedom in the choice of the fixed part CF(z) of the controller, we shall in this section discuss

some important design choices of the method and the corresponding properties of the resulting controller.
We do so mainly by examining the connections between the poles and zeroes of the real system G0(z), the
reference model M(z) and the ideal controller Cd(z). From (6) we have that

Cd(z) =
dG0 (z)nM(z)

nG0 (z)(dM(z) − nM(z))
, (17)

where nF(z) denotes the numerator of a transfer function F(z) and dF(z) its denominator. It follows from (17)
that there are several possibilities to factor C(z, ρ) into a fixed part and a part to be identified. Since M(z)
is known, one extreme possibility is to take CF(z) =

nM (z)
dM (z)−nM(z) as the fixed part of the parametric controller

structure (8). By doing this, one gets ũ(t) = u(t) and C̃d(z) = G0(z) in (10), and the problem is then reduced
to the identification of G0(z) and the computation of the controller via (6) in which G0(z) is replaced by the
identified G(z, ρ̂N). In other words, this amounts to model identification plus model-based control based on
the certainty equivalence principle, usually called indirect control design in the adaptive control literature.

Another extreme is to leave all parameters free. In the latter case, the vector ρ will contain more param-
eters than in the former case, which gives the algorithm more degrees of freedom when minimizing the cost
function. In between these two extreme choices, the fixed part CF(z) may contain any fraction of the known
transfer function nM(z)

dM (z)−nM (z) , in which case the parametric model structure C̃(z, ρ) will take the form

C̃(z, ρ) =
nG0 (z, ρ)dP(z, ρ)
dG0 (z, ρ)nP(z, ρ)

, (18)

where nP and dP are the fractions of nM and (dM − nM), respectively, that the user has chosen to put in
C̃(z, ρ). Fixing parts of CF(z) may be called for to account for characteristics not explicitly apparent in
the mathematical formulation, such as the inclusion of an exact integrator in the controller (an ubiquitous
practical requirement).

Observe that by choosing different structures for CF(z) we are able to perform model-based control
– when CF(z) =

nM (z)
dM (z)−nM (z) – or data-driven control for any other choice for CF(z), both using the PE

methodology. By doing this, we believe that a fair comparison can be done between model-based and
data-driven control methods.

Besides, different choices of CF(z) result in different statistical properties of the estimate, which will be
discussed in the next section.

3.4. Estimate error

The error between the ideal controller and the estimated controller is given by

Cd(z) −C(z, ρ̂N) = (Cd(z) −C(z, ρ∗))︸                ︷︷                ︸
BIAS

+ (C(z, ρ∗) −C(z, ρ̂N)) .︸                     ︷︷                     ︸
VARIANCE

(19)

Since the main goal is to identify Cd(z), the choice of CF(z) can be done in order to minimize this error.
First of all, when Assumption 1 holds, the bias term is zero and there is only the variance error. That the
identification of more parameters results in larger variance of the estimated transfer function is known from
[16] [17]. So, in this case it is indicated to have the smallest possible size for ρ in order to have the smallest
variance for the estimated controller transfer function. This is achieved by letting the degree of the fixed
part CF(z) be as large as possible in the factorization (8). It corresponds to the choice CF(z) =

nM (z)
dM (z)−nM(z) ,

resulting in model-based control as discussed above. Any other choice for the fixed part of the controller,
which configures a data-driven approach, yields more parameters to be identified, resulting in larger variance
in the controller, as was also shown in [11].

When Assumption 1 does not hold, the estimated controller will have a bias and a variance error, and
the bias term will typically be significant. As the size of the vector ρ is increased, so does the complexity
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(and hence the flexibility) of the controller, the better this controller will be able to approximate the ideal
controller Cd(z), thus reducing the bias error. Thus, the bias can be shaped by not restricting the controller
class, that is by not imposing too many constraints in CF(z). Choosing CF(z) = 1 will minimize the bias, at
the expense of an increase in the variance error.

In a practical situation, one wants to reduce the total error (19). So a compromise must be reached
between the two extreme choices for CF(z). For a given McMillan degree of the controller C(z, ρ), choosing
CF(z) =

nM(z)
dM (z)−nM (z) implies a small size for the parameter ρ and hence a large bias error and a small variance

error for the estimate of C̃(z, ρ) (see (8)-(9)). At the other extreme, choosing CF(z) = 1 implies a flexible
controller C̃(z, ρ) with a parameter vector ρ of large size, resulting in a small bias error and a large variance
error.

4. A case study

In this section, we present an example that illustrates the design choices for the definition of the fixed part
of the controller and the properties that result for these different design choices. We successively consider
the case where the ideal controller belongs to the controller class C and the case where it does not. For both
cases, we consider that the system is described by (1) with

G0(z) =
0.5(z − 0.8)

(z − 0.7)(z − 0.9)
, H0(z) =

z
z − 0.3

, (20)

and that the white noise variance is σ2
e = 0.01. The desired reference model with zero steady-state error is

chosen as:
M(z) =

0.16z
(z − 0.6)2 .

The ideal controller is then calculated from (6) as

Cd(z) =
0.32z(z − 0.7)(z − 0.9)

(z − 0.8)(z − 1)(z − 0.36)
.

In order to compare the properties of the estimates corresponding to the different choices for CF(z),
we identified the controllers under the following experimental conditions. We applied a PRBS signal with
amplitude ±1 as input signal of an open-loop experiment, and we collected 1000 samples of input and output
data on the process. The identification was done using output error structures and the use of the algorithm
presented in [18], in which the user only specifies the number of parameters to be identified in the numerator
and denominator, the delay amount, and provides input and output data2. The identification toolbox with the
algorithm can be found in <http://www.datadrivencontrol.com>. The use of an output error model,
i.e. with H(z, θ) = 1 still results in an unbiased estimate for the controller since the data are collected in
open loop.

One hundred Monte Carlo runs were realized for each choice for CF(z); an error measure, denoted by
Ec, was computed for each controller as

Ec =

∥∥∥∥∥ z − 1
z

[
Cd(z) −C(z, ρ̂N)

]∥∥∥∥∥
2
,

where we have removed the unstable modes from the controller to obtain a finite value. In the case where
the matching condition is satisfied, this error is made of a variance error only, while in the case where the
matching condition is not satisfied, this measure contains both variance and bias error.

We have applied all the controllers to a closed-loop system without noise, so that we could also evaluate
the reference model cost as

Ĵ =
1
N

N∑
t=1

[(T (z, ρ̂N) − M(z))r(t)]2,

2The same information could be used with ident toolbox from MatLab to perform the identification of the controller.
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where the reference signal r(t) applied to the closed loop is a square wave with amplitude 1 and period 200
samples, during N = 1000 samples.

4.1. The ideal case: Cd(z) ∈ C
We first select a controller structure C = {C(z, ρ)} that is able to represent the ideal Cd(z). It is clear from

(8) that at least two extreme choices are possible for CF(z):

CF
1 (z) =

M(z)
1 − M(z)

or CF
4 (z) = 1.

With the first choice we fix everything we know from the ideal controller, which yields

CF
1 (z) =

0.16z
(z − 1)(z − 0.36)

, CI
1(z, ρ) =

z2 + ρ3z + ρ4

ρ1z + ρ2
, and hence C̃(z, ρ) =

ρ1z + ρ2

z2 + ρ3z + ρ4

with ρ01 = [0.5 −0.4 −1.6 0.63]T , while in the second choice we do not fix anything and let the algorithm
identify all the parameters of the controller, that is

CF
4 (z) = 1 and CI

4(z, ρ) =
z3 + ρ5z2 + ρ6z + ρ7

ρ1z3 + ρ2z2 + ρ3z + ρ4
,

with the optimal ρ04 = [3.125 −6.75 4.525 −0.9 −1.6 0.63 0]T . Thus we observe that the second choice
leads to the estimation of seven parameters, while the first leads to the estimation of only four parameters
which are in fact the parameters of G0(z), as explained in Section 3.

In between these two extreme choices, there is the possibility of choosing different structures for the fixed
part of the controller, such as an integrator for the case where one control objective is to follow constant
signals, for example. For this case, we show the results using also two intermediate choices, given by

CF
2 (z) =

z
z − 1

and CF
3 (z) =

1
z − 1

.

Using CF
2 (z) yields

CI
2(z, ρ) =

z2 + ρ4z + ρ5

ρ1z2 + ρ2z + ρ3
,

with ρ02 = [3.125 − 3.625 0.9 − 1.6 0.63]T , while using CF
3 (z) results in

CI
3(z, ρ) =

z3 + ρ4z2 + ρ5z + ρ6

ρ1z2 + ρ2z + ρ3
,

with ρ03 = [3.125 − 3.625 0.9 − 1.6 0.63 0]T .
Fig. 1 shows the box plots3 of the error measure Ec resulting from 100 Monte Carlo runs for each of the

four different choices for CF(z)4. From Fig. 1 we see that as we increase the number of identified parameters,
the error Ec increases. Since Cd(z) ∈ C, this error is due only to the parameter variance error. Thus the error
on the estimated controller increases with the number of parameters, since more parameters result in larger
variance error. Fig. 2 shows the box plots of the estimated cost Ĵ, for the four different choices for the
fixed part of the controller, while Table 1 shows the mean value of the estimated control error Ec and of
the estimated cost Ĵ for these four different choices of CF(z). We observe that, even though the controller
variance increases significantly with the number of free parameters, the increase in the achieved model
reference cost is much smaller. To be precise, Table 1 shows that the average control error Ec increases by
58% between the configurations CF

1 (z) and CF
4 (z), while the corresponding increase for Ĵ is only 21%. We

conclude that in the case where the ideal controller belongs to the controller set C, model-based design is
to be preferred because it yields an estimation problem with the smallest number of parameters and that the
only errors are due to variance.
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Fig. 1. Distribution of the error measure Ec considering the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1
is satisfied.
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Fig. 2. Distribution of the estimated cost Ĵ considering the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1 is
satisfied.

For each choice for CF(z), the mean controllers were obtained from the 100 Monte Carlo runs, which
are given by

C1(z, ρ̂m) =
1.9989(z − 0.9003)(z − 0.7008)

(z − 0.8010)
0.16z

(z − 1)(z − 0.36)
,

C2(z, ρ̂m) =
0.31977(z − 0.9005)(z − 0.7031)

(z − 0.8025)(z − 0.3614)
z

z − 1
,

C3(z, ρ̂m) =
0.31976(z − 0.9006)(z − 0.7031)(z + 0.0006482)

(z − 0.8027)(z − 0.3607)
1

z − 1
,

C4(z, ρ̂m) =
0.31975(z − 0.9005)(z − 0.7023)(z + 0.0009422)

(z − 1.000)(z − 0.8021)(z − 0.3602)
1,

3On each box, the central mark is the median, the edges of the box are the 25th and the 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers are plotted individually.

4With the choice CF
4 (z), the integrator is identified with some variance error. In order to compute the error measure, we considered

rounding the integrator with a 10−4 tolerance.
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Table 1. Mean values of Ec and Ĵ in the case Assumption 1 is satisfied.

Controller Mean error Mean cost
CF

1 (z) 2.6460 × 10−3 5.7324 × 10−7

CF
2 (z) 3.2942 × 10−3 6.4631 × 10−7

CF
3 (z) 4.1849 × 10−3 6.7400 × 10−7

CF
4 (z) 4.1877 × 10−3 6.9633 × 10−7

where the fixed part is clearly separated from the identified part of the controller.
From Fig. 1 and Table 1 we see that the choices CF

3 (z) and CF
4 (z) yield essentially the same results for

the norm of the control error and for the achieved control cost. However, fixing a pole at 1 guarantees null
steady-state error to step changes, and for this reason, we consider only choices where this pole is fixed.

4.2. The non-ideal case: Cd(z) < C
We now explore the application of the OCI method considering that the chosen controller structure

is restricted and that Cd(z) does not belong to it. We still consider different choices for CF(z), and the
corresponding CI(z) contains less parameters than would be necessary to identify the ideal controller. Our
choices are as follows:

CF
1 (z) =

0.16z
(z − 1)(z − 0.36)

, CI
1(z, ρ) =

z + ρ2

ρ1
(21)

CF
2 (z) =

z
z − 1

, CI
2(z, ρ) =

z + ρ3

ρ1z + ρ2
(22)

CF
3 (z) =

1
z − 1

, CI
3(z, ρ) =

z2 + ρ3z + ρ4

ρ1z + ρ2
. (23)

Notice that the first choice corresponds to the model-based approach, where we identify a first order model
for the plant, which is actually second order. Choices 2 and 3 correspond to data-driven approaches, with
different degrees of freedom for the part to be identified.

Again, 100 Monte Carlo runs were performed, and for each obtained controller the error measure Ec and
the reference model cost Ĵ were computed. Notice that now the error measure Ec is formed by variance and
bias errors. Fig. 3 shows the error measure Ec for each obtained controller, while Fig. 5 shows the obtained
cost Ĵ when each controller was applied in closed loop. From Fig. 3 we see that the more free parameters
to estimate, the smaller is the error Ec, showing that the bias error dominates the variance error. There is
no significant difference between choices 2 and 3, but it is significant when comparing these two to the first
choice, namely the model-based design. The distribution of this measure is shown in Fig. 4, where we can
see that the median of CF

3 (z) is slightly smaller than the median of CF
2 (z). The mean values of Ec for the

three choices are presented in Table 2.

Table 2. Mean values of Ec and Ĵ when Assumption 1 is not satisfied.

Controller Mean error Mean cost
CF

1 (z) 3.6653 × 10−2 4.0181 × 10−2

CF
2 (z) 1.8061 × 10−2 1.1804 × 10−2

CF
3 (z) 1.5036 × 10−2 5.0596 × 10−3

However, when we consider the reference model cost Ĵ, which is actually our performance criterion,
there is a significant difference between the three different choices: the more parameters we estimate, the
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Fig. 3. Error measure Ec for the 100 Monte Carlo runs for each choice of CF (z) when Assumption 1 is not satisfied.
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Fig. 4. Distribution of the error measure Ec for the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1 is not
satisfied.

smaller is the resulting cost, as shown in Fig. 5. This is an important observation which shows that, in a
practical situation where the ideal controller does not belong to the chosen controller class, the bias error
dominates. Thus bias error is reduced when we perform data-driven design using more free parameters,
i.e. when more degrees of freedom are available for the minimization of the cost function. Notice that our
method does not minimize JMR(ρ) cost, but minimizes V̄(θ), which does not depend on the process model.
However, we can see that by minimizing V̄(θ), we have also minimized JMR(ρ), as shown by the results
presented in Fig. 5, where the calculated cost is presented for each Monte Carlo run, as well as in Figs. 6
and 7, where the distribution of the calculated cost is presented with box and histograms plots, respectively.
The mean values of the cost Ĵ are also presented in Table 2, where it is seen that they have significantly
decreased with more free parameters.

We have also computed the mean value of each controller. For each choice of CF(z), the mean con-
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Fig. 5. Estimated cost Ĵ for the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1 is not satisfied.
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Fig. 6. Distribution of the estimated cost Ĵ for the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1 is not
satisfied.

trollers, from the 100 Monte Carlo runs, are given by

C1(z, ρ̂m) =
2.1439(z − 0.8499)

1
0.16z

(z − 1)(z − 0.36)
,

C2(z, ρ̂m) =
0.31607(z − 0.8705)

(z − 0.4721)
z

z − 1
,

C3(z, ρ̂m) =
0.32116(z − 0.8796)(z − 0.1479)

(z − 0.5692)
1

z − 1
.

5. Experimental results

We have applied the proposed methodology to design a PID controller of a pilot plant, where the goal is
to control the level of one tank in a three tank plant. The same plant was used in [9], where a controller was
obtained using the VRFT method considering the flow control of one tank. The schematic diagram in Fig.
8 describes the main parts of the process. The whole process is built with of-the-shelf industrial equipment
(pumps, valves, sensors and tanks). Tanks 1 and 2 have a 70 liters capacity each, while tank 3 is a 250 liter
container.
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Fig. 7. Histogram of the estimated cost Ĵ for the 100 Monte Carlo runs for each choice of CF (z) in the case Assumption 1 is not
satisfied.

Fig. 8. Schematic diagram of the pilot plant.

The water is pumped up from Tank 3 to Tank 2 through Valve 1, from Tank 1 to Tank 2 through Valve
2 and back to Tank 3 by gravity. The liquid level of Tank 1 is the process variable y(t) and the opening of
Valve 1 is the manipulated variable u(t). Our goal here is to apply the OCI methodology for the computation
of controllers to obtain a desired closed-loop performance, with two choices for CF(z). One choice is related
to model based control and other to data-driven control. Data were collected in an open-loop experiment
in which the input was a square wave over 5000 s, where the sampling time was Ts = 10 s. The input and
output signals of the experiment are presented in Fig. 9.

The open-loop settling time is around 800 s, and since the process dynamics involves the dynamics of
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Fig. 9. Open-loop experiment.

two tanks, we have chosen a reference model with two poles and settling time around 400 s, given by

M(z) =
0.0169z

(z − 0.87)2 .

To apply the OCI method, we need to define, among the PID controller class, the fixed part of the controller.
In order to show what we have explored in the paper, we defined two different controllers:

CF
1 (z) =

M(z)
(1 − M(z))

=
0.0169z

(z − 1)(z − 0.7569)
, CI

1(z, ρ) =
z + ρ2

ρ1
(24)

CF
2 (z) =

1
z − 1

, CI
2(z, ρ) =

z2 + ρ3z + ρ4

ρ1z + ρ2
. (25)

With CF
1 (z), OCI leads to a plant model of order one, followed by the computation of the controller, while

with the choice of CF
2 (z) only a pole at one is fixed and two additional parameters are used in order to

estimate the controller. Notice that a first order model for the plant is clearly an underparameterized model,
since the real plant involves the dynamics of two tanks. The resulting controllers are

C1(z, ρ̂N) =
27.588(z − 0.96953)

1
0.0169z

(z − 1)(z − 0.7569)
(26)

C2(z, ρ̂N) =
6.8237(z2 − 1.8759z + 0.88012)

(z − 0.5293)
1

z − 1
, (27)

and the closed-loop responses obtained with both controllers are presented in Fig. 10. The estimated cost

Ĵ =
1
N

N∑
t=1

(y(t, ρ̂N) − M(z)r(t))2

was computed as 2.0358 cm2 for the closed loop with C1(z, ρ̂N) and 0.12789 cm2 for the closed loop with
C2(z, ρ̂N), using data presented in Fig. 10. Notice that, unlike the simulated results presented in the previous
section, this cost is not the model reference cost, since the collected output is noisy, but it is formed by the
model reference cost and a noise cost. From the step responses and the estimated costs, it is clear that the
bias was reduced with the second controller, showing that in this case the data-driven controller C2(z, ρ̂N)
outperforms the model-based controller C1(z, ρ̂N), the main reason being that it has significantly smaller
bias error due to its greater flexibility; hence it is better able to approximate the optimal controller.
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Fig. 10. Closed-loop responses with the identified controllers C1(z, ρ̂N ) and C2(z, ρ̂N ) compared with the desired reference model
response.

6. Conclusions
A one-shot data-based method used to identify the ideal MR controller has been presented. The method

consists in solving a PE identification problem, where the inverse of the ideal controller is identified from
data collected on the system. More specifically, the controller structure is described with an identifiable
part and a fixed part, and the choices for the fixed part allow us to consider different designs, from pure
model-based to entirely data-driven controller design, both performed by the prediction error approach.
Within this framework, it is possible to analyze and compare the statical properties of both approaches.
We have shown that when the ideal controller belongs to the user-specified controller class, the controller
variance is smaller when model-based control design is performed; however, the model reference cost is
not significantly smaller with model-based design than with data-based design. On the other hand, in the
more relevant case in which the ideal controller does not belong to the controller class, then DD design
outperforms the indirect approach, both in controller variance and in achieved closed-loop model reference
cost. The indirect approach in this case amounts to identification of a reduced order model of the plant.
So, the bias distribution is made at the stage of identification of the model plant, whereas in the data-driven
approach the bias distribution is made at the stage of controller estimation, taking account of the control
objective. This means that in practice, where usually the ideal controller does not belong to the controller
set and the noise is not too significant, DD design yields better bias shaping and consequently better closed-
loop performance than model-based design. Results on a pilot plant have confirmed this.

In doing so, we believe this paper has added useful insight into data-based MR design methods.
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[4] A. Karimi, L. Mišković, D. Bonvin, Iterative Correlation-Based Controller Tuning, International Journal of Adaptive Control and
Signal Processing 18 (8) (2004) 645–664.

[5] S. J. Qin, Survey on data-driven industrial process monitoring and diagnosis, Annual Reviews in Control 36 (2) (2012) 220 –
234.

[6] J. MacGregor, A. Cinar, Monitoring, fault diagnosis, fault-tolerant control and optimization: Data driven methods, Computers
and Chemical Engineering 47 (2012) 111 – 120, FOCAPO 2012.

[7] S. Yin, G. Wang, H. Gao, Data-driven process monitoring based on modified orthogonal projections to latent structures, IEEE
Transactions on Control Systems Technology PP (99) (2015) 1–8.

[8] A. Karimi, K. van Heusden, D. Bonvin, Non-iterative data-driven controller tuning using the correlation approach, in: Proc.
European Control Conference, Kos, Greece, 2007, pp. 5189–5195.

[9] A. Bazanella, L. Campestrini, D. Eckhard, Data-Driven Controller Design: The H2 Approach, Springer, New York, USA, 2012.
[10] L. Ljung, System Identification: Theory for the User, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1999.
[11] L. Campestrini, D. Eckhard, A. S. Bazanella, M. Gevers, Model reference control design by prediction error identification, in:

16th IFAC Symposium on System Identification, IFAC, Brussels, Belgium, 2012, pp. 1478 – 1483.
[12] L. Campestrini, D. Eckhard, M. Gevers, A. S. Bazanella, Virtual reference feedback tuning for non-minimum phase plants,

Automatica 47 (8) (2011) 1778–1784.
[13] G. R. Gonçalves da Silva, L. Campestrini, A. S. Bazanella, Automating the choice of the reference model for data-based control

methods applied to PID controllers, in: Proceedings of XX Congresso Brasileiro de Automática, SBA, Belo Horizonte, 2014, pp.
1088–1095.

[14] A. Bazanella, X. Bombois, M. Gevers, Necessary and sufficient conditions for uniqueness of the minimum in prediction error
identification, Automatica 48 (8) (2012) 1621–1630.

[15] K. van Heusden, A. Karimi, T. Söderström, On identification methods for direct data-driven controller tuning, International
Journal of Adaptive Control and Signal Processing 25 (5) (2011) 448–465.

[16] L. Xie, L. Ljung, Asymptotic variance expressions for estimated frequency functions, IEEE Transactions on Automatic Control
AC-46 (2001) 1887–1899.

[17] B. Ninness, H. Hjalmarsson, Variance error quantifications that are exact for finite model order, IEEE Transactions on Automatic
Control 49 (8) (2004) 1275–1291.

[18] D. Eckhard, A. Bazanella, C. Rojas, H. Hjalmarsson, On the convergence of the prediction error method to its global minimum, in:
16th IFAC Symposium on System Identification, IFAC, Brussels, 2012, pp. 698–703. doi:10.3182/20120711-3-BE-2027.00371.




