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Abstract

Continuous process industries usually have hundreds to thousands of control loops, most of which are coupled, i.e. one control loop
affects the behavior of another control loop. In order to properly design the controllers and reduce the interactions between loops it
is necessary to consider the multivariable structure of the process. Usually MIMO (multiple-input, multiple-output) controllers are
designed using MIMO models of the process, but obtaining these models is a task very demanding and time consuming. Virtual
Reference Feedback Tuning (VRFT) is a data-driven technique to design controllers which do not use a model of the process; all the
needed information is collected from input/output data from an experiment. The method is well established for SISO (single-input,
single-output) systems and there are some extensions to MIMO process which assume that all the outputs should have the same
closed-loop performance. In this paper we develop a complete framework to MIMO VRFT which provides unbiased estimates to
the optimal MIMO controller (when it is possible) even when the closed-loop performances are distinct to each loop. When it is not
possible to obtain the optimal controller because the controller class is too restrictive (for example PID controllers) then we propose
the use of a filter to reduce the bias on the estimates. Also, when the data is corrupted by noise, the use of instrumental variables to
eliminate the bias on the estimate should be considered. The article presents simulation examples and a practical experiment on a
tree tank system where the goal is to control the level of two tanks.
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1. Introduction

A large amount of industrial processes can be considered
multivariable, due to the interaction between different variables
involved. In order to obtain a desired output performance, con-
trol design must take into account the MIMO (multiple-input,
multiple-output) nature of the process, without simply using
SISO (single-input, single-output) tuning rules. One way of
tuning PID controllers is to use Ziegler-Nichols methods, which
are based in few information on the process. MIMO approaches
for tuning decentralized PID controllers are presented in [1, 2].
However, since these methods use few information about the
process, the obtained results may be unsatisfactory. A proper
way to do that would be first obtaining a MIMO model of the
process, then using a MIMO tuning rule, as the ones presented
in [3, 4], for example. By doing so, one could find the controller
that perfectly matches the desired output performance, usually
given by adequate time responses of each controlled variable
and no or low interactions between them.

However, there are some drawbacks in applying this pro-
cedure: obtaining appropriate MIMO models is usually very
demanding and time consuming; even if the obtained MIMO
process model is a low order transfer matrix, the controller
that would yield the desired response tends to be a high or-

IThis work was partially supported by CNPq/Brasil, CAPES/Brasil and
Fapergs/Brasil.

der one, which will probably not be appropriate for implemen-
tation. If the goal is to tune PID controllers, which are still
widely used in industrial applications, then a controller model
reduction should also be applied in order to obtain an imple-
mentable controller. Among different methods that can be used
to tune multivariable controllers, data-driven methods present
an interesting characteristic: they do not use a process model.
The information about the process is obtained through input and
output data collected from process operation or some extra ex-
periment on the system. The controller is tuned through an op-
timization procedure based on these data, a chosen controller
structure (PID, for example) and the closed-loop performance
requirements, which are translated into a transfer function ma-
trix, but a mathematical model of the process is not used.

There are several data-driven methods developed for SISO
control problems in the literature, some of them are iterative
[5, 6, 7, 8], some are one-shot [9, 10, 11]. The main advantage
of one-shot methods is that operation data can be used, without
the need of performing specific experiments. However, SISO
methods are not proper to be used when interactions between
variables are significant, and some effort has been put in devel-
oping the extensions of these methods to the MIMO case: some
are iterative [12, 13] and present the disadvantage of a higher
number of experiments needed, others are one-shot [14, 15, 16],
based on only one experiment. Besides, the complexity of
MIMO one-shot data based methods, considering tuning de-
centralized or full controllers, is only a bit higher then the SISO
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design, and it does not increase as the number of outputs to be
controlled increases. These characteristics make one-shot data-
driven methods very appealing to process control.

In this work we propose an extension of the Virtual Refer-
ence Feedback Tuning (VRFT) method to the MIMO case. The
SISO VRFT method was introduced in [9] and its formulation
can be seen as the identification of the ideal controller, consid-
ering that the user has access to input and output signals of the
controller and that the ideal controller belongs to a controller
class chosen by the user (a common assumption in data-driven
design). Our formulation presents the same properties.

An extension of the VRFT method to MIMO processes is
presented in [15], and a deeper investigation of that extension
is presented in [17, 18]. As pointed out by the authors, the
extension they propose provides the ideal controller when some
restrictions are satisfied, including the one of equal closed-loop
performance for all variables involved, which is not a restriction
of the extension presented in this work. We show that, using
our method, different closed-loop performances for each output
signal are allowed and the method still results in an unbiased
estimate for the ideal controller, if it is in the controller class
chosen. When the ideal controller is not in the controller set, a
filter can be used to approximate the minima of the VRFT and
the model reference criteria. Finally, if signals are corrupted by
noise, an instrumental variable should be used. In any of these
cases, the main characteristic of VRFT is maintained: it is a
one-shot data driven method, where the controller parameters
are obtained through the solution of a least squares problem.

The paper is organized as follows. The problem statement is
presented in Section 2. Section 3 briefly presents the state of the
art of the VRFT method: the formulation of the SISO VRFT
and the MIMO VRFT method found in the literature, point-
ing out its restrictions. The proposed formulation, developed in
order to obtain an unbiased estimate of the ideal controller is
presented in Section 4, where closed solutions of the problem
considering the use of a filter when the ideal controller is not in
the controller set and an instrumental variable in the case data
are corrupted by noise are presented. Section 5 presents an il-
lustrative example of the proposed method through a simulated
process and an application to the level control of a two-input-
two-output pilot plant. Conclusions are presented at the end of
the paper.

2. Problem Statement

Consider a linear time-invariant discrete-time process

y(t) = G(q)u(t) + v(t), (1)

where q is the forward-shift operator, G(q) is an n × n ratio-
nal transfer function matrix, u(t) and y(t) represent respectively
input and output signal of the plant, both represented by an n-
dimension column vector, and v(t) is the noise vector.

This process is controlled by an n × n linear time-invariant
controller, which belongs to a given - user specified - class C of
transfer function matrices. The controller is parameterized by a

parameter vector P ∈ Rp, so that the control action u(t) can be
written as

u(t) = C(q, P)(r(t) − y(t)), (2)

where r(t) is a reference signal vector, which is assumed to be
quasi-stationary.

The system (1)-(2) in closed loop becomes

y(t, P) = T (q, P)r(t) + S (q, P)v(t)
S (q, P) = (G(q)C(q, P) + I)−1 ,

T (q, P) = S (q, P)G(q)C(q, P) = G(q)C(q, P)S (q, P),

where we have now made the dependence on the controller pa-
rameter vector P explicit in the set of output signals y(t, P).

The controller class C is defined as

C = {C(q, P) : P ∈ Ω ⊆ Rp} ,

where the structure of the controller to be designed is defined
as follows,

C(q, P) =


C11(q, ρ11) C12(q, ρ12) · · · C1n(q, ρ1n)

...
...

...
Cn1(q, ρn1) Cn2(q, ρn2) · · · Cnn(q, ρnn)

 ,
(3)

where P = [ρT
11 ρ

T
12 . . . ρ

T
n1 . . . ρ

T
nn]T . It is also assumed that

each subcontroller has a linear parametrization, i.e. they can be
written as

Ci j(q, ρi j) = ρT
i jC̄i j(q), ρi j ∈ Rm, (4)

where C̄i j(q) is an m-vector of fixed causal rational functions.
Besides each subcontroller can have a different structure, pro-
vided that each one is linear in the parameters.

As an example, a full PID controller can be written as (3)
with

Ci j(q, ρi j) =
[
Kpi j Kii j Kdi j

] 
1
q

q−1
q−1

q

 , for i = 1, ..., n,
j = 1, ..., n. (5)

The closed-loop performance is specified through a “desired”
closed loop transfer function matrix Td(q), also known as the
reference model,

yd(t) = Td(q)r(t),

where Td(q) describes the relation between the reference signal
and the desired output of the closed-loop system.

The controller parameters may be tuned solving the model
reference (MR) optimisation problem

P̂ = arg min
P

JMR(P) (6)

JMR(P) ,
N∑

t=1

||(Td(q) − T (q, P))r(t)||22. (7)

The ideal controller Cd(q) is the one that allows the closed
loop system to match exactly Td(q) and is given by

Cd(q) = G(q)−1Td(q)(I − Td(q))−1. (8)
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We can then define the bias as the error between the ideal
controller and the estimated one:

BIAS = E[Cd(q) −C(q, P̂)], (9)

where E means the expected value.
In general, the ideal controller can not be achieved solving

the optimization problem (6) because the controller structure C
may be restrictive, which results in BIAS different from zero.
However, this is the best controller that could run in closed-loop
and whenever is possible it should be used. When the structure
C is such that the controller Cd(q) can be represented we say
that the ideal controller belongs to the controller class.

Assumption 1. Cd(q) ∈ C: There is a P0 such that C(q, P0) =
Cd(q).

When Assumption 1 is respected, the parameter vector P0
solves the optimisation problem (6) and it may be computed
using (8). However, (8) depends on the process model G(q),
which is assumed to be unknown by the user, so it can not be
used to solve the optimisation problem (6). In this work, we
want to solve the optimisation problem using only input/output
data as information about the process - no other information as
the transfer function model is available.

There are some techniques in the literature that aim to solve
the optimisation problem (6) using only input/output data from
the process, which are known as data-driven methods in con-
trast to the model-based techniques, which rely on the process
model. The Iterative Feedback Tuning (IFT) [5] is probably the
most known method. It is an iterative method which needs data
from two specific experiments at each iteration to solve the opti-
misation problem with a gradient-based algorithm. On the other
hand, there is the Virtual Reference Feedback Tuning (VRFT)
[9] which is a direct method that do not need iterations to solve
the optimisation problem. This method was initially developed
to SISO systems and after there were some extensions to the
MIMO case. In this work we present a more complete frame-
work for the VRFT which copes both with SISO and MIMO
problems with the same formulation and is able to find the min-
imum of (7) for a broader class of problems.

3. State of the Art - VRFT

The VRFT method is a one-shot data based method, that is,
with one batch of data, the method searches for a controller
that makes the closed-loop system as close as possible to the
reference model. The method was introduced in [9], and some
extensions were presented in [19, 20, 21, 11, 22, 23, 24] for
SISO systems and in [15, 17, 18, 25, 26, 27] for MIMO systems.

The main idea of the method is to find the minimum of
JMR(ρ) criterion without the knowledge of the process model
and without using iterative algorithms. The user defines the ref-
erence model Td(q) and the controller structure, then the con-
troller parameters are found through a least squares minimiza-
tion. We briefly explain the characteristics of the method, for
SISO and MIMO cases.

3.1. VRFT SISO

Consider the noise free case, that is v(t) = 0 in (1), and
the single-input, single-output case, that is n = 1.Through
either an open-loop or a closed-loop experiment, input data
u(t) and output data y(t) are collected on the process. Given
the measured y(t), the virtual reference signal r̄(t) is defined
such that Td(q)r̄(t) = y(t), and the virtual error is given by
ē(t) = r̄(t) − y(t).

Even though the plant G(q) is unknown, when it is fed by
u(t) (the measured input signal), it generates y(t) as output. So,
a “good” controller is one that generates u(t) when fed by ē(t).
Since both signals u(t) and ē(t) are known, the controller de-
sign can be seen as the identification of the dynamical relation
between ē(t) and u(t). As a result of this reasoning, the SISO
VRFT method minimizes the following criterion

JVR
S IS O(P) =

N∑
t=1

{L(q)[u(t) −C(q, P)ē(t)]}2 , (10)

=

N∑
t=1

{
L(q)[u(t) −C(q, P)(Td(q)−1 − 1)y(t)]

}2
where L(q) is a filter used to approximate the minima of
JVR

S IS O(P) and JMR
S IS O(P) when Assumption 1 is not satisfied. If

the controller is linearly parametrized, JVR
S IS O(P) is quadratic

and can be easily minimized, which is one of the main advan-
tages over other data-driven methods.

In order to analise the properties of JVR
S IS O(P), when N → ∞

Parseval’s theorem can be applied to (10) yielding [28]

JVR
S IS O(P) =

1
2π

∫ π
−π
|L(e ȷω)|2 |G(e ȷω)|2|S d(e ȷω)|2

|Td(e ȷω)|2
× |Cd(e ȷω) −C(e ȷω, P)|2Φu(e ȷω)dω, (11)

where Φu(e ȷω) is the spectrum of the applied signal u(t). From
(11) it is easy to see that in spite of JVR

S IS O(P) be different from
JMR(P), when Assumption 1 is respected, JVR

S IS O(P) is mini-
mized by Cd(q), which is the minimum of JMR(P). Notice
that in the absence of noise, the minimum of both cost func-
tion evaluate to zero when Assumption 1 is satisfied. In this
case, the filter L(q) does not change the minimum of the cost
function, it only shapes its form. Therefore, the SISO VRFT
method solves an easier (convex) optimization problem, with-
out the knowledge of the process model G(q), and achieves the
same controller than MR optimization.

3.1.1. Filter design
When Assumption 1 is not satisfied, the filter L(q) is de-

signed such that the minimum of JVR
S IS O(P) becomes closer to

the minimum of JMR
S IS O(P) [9, 28]. Applying Parseval’s Theo-

rem to JMR
S IS O(P) and comparing its expression to (11), it can be

seen that there is a choice for the filter so that both functions are
alike. This filter is given by

|L(e ȷω)|2 = |Td(e ȷω)|2|S (e ȷω, P)|2Φr(e ȷω)
Φu(e ȷω)

, ∀ω ∈ [−π, π] (12)
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where Φr(e ȷω) is the spectrum of the reference signal r(t) we
want to apply to the closed-loop system. If both functions are
alike, so are their minimum. However, since S (q, P) is un-
known, the filter is approximated by

|L(e ȷω)|2 = |Td(e ȷω)|2|1−Td(e ȷω)|2Φr(e ȷω)
Φu(e ȷω)

, ∀ω ∈ [−π, π] (13)

where the approximation |S (e ȷω, ρ)|2 ≈ |S d(e ȷω)|2 was made. If
the chosen controller class C is not far from the ideal controller
class, then this approximation is valid, and the filter will ap-
proximate the minima. Besides that, when the data is collected
in open loop, and the applied signal u(t) is the same type as
the reference signal r(t) is usually applied on the process, than
Φr(e ȷω)
Φu(e ȷω) = 1, and the filter is only dependent on Td(q), which is
known.

3.1.2. Dealing with noise
All the formulation of the VRFT method considers the ideal

situation where signals are noise-free. When data are corrupted
by noise, the minimization of (10) is done using an instrumental
variable [9, 28], in order to cope with the bias error introduced
by the noise in ē(t), the input signal of the identification prob-
lem.

3.2. MIMO case
In [15] the VRFT method was extended to MIMO processes

and the works [17, 18] presented a deeper investigation of the
method and its application to a diesel engine. An application to
a boiler plant is presented in [16] while [25] presents its appli-
cation to the wastewater treatment control. The method’s for-
mulation considers again the noise free case, that is v(t) = 0
in (1), and that the system has the same number of inputs and
outputs.

In the related works ([15, 17, 18]), the parameters of the con-
troller are chosen as the solution of an optimization problem
where the following objective criterion is minimized:

JVR(P) =
N∑

t=1

||F(q)u(t) −C(q, P)(T−1
d (q) − I)F(q)y(t)||22. (14)

If the controller is linearly parametrized, JVR(P) is convex, and
therefore the optimization problem can be easily solved, as in
the SISO case.

However, notice that (14) is the MIMO version of (10)
only in the case where F(q) can comute in the expression
C(q, P)(T−1

d (q)−I)F(q). Since all the terms in the expression are
matrices, the filter can comute only if its given by F(q) = f (q)I,
that is, a SISO transfer function multiplied by the identity ma-
trix. If the filter can not comute, then even when Assumption 1
is satisfied, the minimum of JVR(P) is not Cd(q).

Again, in all works, the authors set F(q) = Td(q), so (14)
becomes

JVR(P) =
N∑

t=1

||Td(q)u(t) −C(q, P)(I − Td(q))y(t)||22. (15)

By setting the filter equal to Td(q), the restriction on filter F(q)
is now a restriction on Td(q), which means that the reference
model should be

Td(q) =


T1(q) 0 · · · 0

0 T1(q) 0
...

. . .

0 0 T1(q)

 . (16)

So when Assumption 1 is satisfied and Td(q) is as in (16), the
minimum of the objective function JVR(P) corresponds to the
ideal controller Cd(q). If Td(q) is not as in (16), then it is
not possible to obtain exactly the desired response, as it occurs
when applying VRFT SISO (in the noise free case). We show
that in a simple example. Consider a process given by

G(q) =
 0.09516

q−0.9048
0.03807

q−0.9048
−0.02974
q−0.9048

0.04758
q−0.9048

 , (17)

which is the same process used in [17], with sampling time of
1 second. Consider also a closed-loop model given by

Td(q) =

 1−a1
q−a1

0
0 1−a2

q−a2

 . (18)

In this case, the ideal controller Cd(q) is a full controller where
each subcontroller is a PI controller. In order to respect As-
sumption 1, we choose C a full controller PI class, where the
parameters to be estimated are Kp and Ki of each subcontroller.
To obtain input and output data from the process, we perform an
open-loop experiment, collecting 600 samples of each signal: a
unitary step is applied to the first input in the beginning of the
experiment and after 300 samples a unitary step is applied to
the second input.

We minimize (15) for two different options of Td(q):

1. Td1(q) is given by (18), where a1 = a2 = 0.9;
2. Td2(q) is given by (18), where a1 = 0.9 and a2 = 0.6.

Table 1 compares the obtained results with the ideal controller
for each case. When Td(q) is chosen as (16) – Td1(q) in the ex-
ample – the literature method is able to find the ideal controller
since Cd1(q) = C(q, P1). However in the case where the refer-
ence model is not diagonal with all elements alike – Td2(q) in
the example – the method is not able to find the ideal controller
(Cd2(q) , C(q, P2)), even when Assumption 1 is satisfied. No-
tice that the bias is more significant in the decouplers, which
means that, in this case, the closed-loop response will be dif-
ferent from the desired response especially in the disturbance
between the loops.

In several industrial problems, the settling time of each loop
is very different and to force the desired closed-loop perfor-
mance to be the same for all loops is undesirable. In this
work, we will develop a similar method that even when the user
chooses any reference model Td(q), it is still possible to obtain
Cd(q), considering that Assumption 1 is satisfied. Besides that,
we also obtain a filter to approximate the minima of JMR(P) and
JVR(P) when Assumption 1 is not satisfied, based on the SISO
approach.
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Table 1: Control parameters obtained with two different choices for Td(q).

Td1(q) Td2(q)
P Cd1(q) C(q, P̂1) Cd2(q) C(q, P̂2)

Kp11 0.7606 0.7606 0.7606 0.7613
Ki11 0.08 0.08 0.08 0.08
Kp12 -0.6086 -0.6086 -2.434 -0.468
Ki12 -0.064 -0.064 -0.256 -0.256
Kp21 0.4754 0.4754 0.475 0.899
Ki21 0.05 0.05 0.05 0.049
Kp22 1.521 1.521 6.085 5.975
Ki22 0.16 0.16 0.64 0.632

As in the SISO case, the formulation of the MIMO VRFT
considers that the signals are noise free. When they are cor-
rupted with noise, the authors in [17, 18] suggest the use of an
instrumental variable to cope with the bias problem caused by
the noise.

4. Unbiased MIMO VRFT

In this work we propose the use of a new objective criterion
to be used with the MIMO VRFT. Instead of criterion (15) de-
scribed in [15], we propose the following optimisation problem
inspired in the SISO VRFT:

min
P

JVRF(P) (19)

JVRF(P) =
N∑

t=1

∥F(q)[u(t) −C(q, P)ē(t)]∥22. (20)

where now u(t) and ē(t) are vectors, C(q, P) is the controller ma-
trix and F(q) is a filter that can be used as an additional degree
of freedom by the user.

An important property of JVRF(P) is that, when Assumption
1 is respected, the ideal controller Cd(q) is the minimum of
JVRF(P), no matter which filter F(q) is chosen. If we substi-
tute the virtual error ē(t) in JVRF(P) and consider that the noise
is null, the objective criterion becomes

JVRF(P) =
N∑

t=1

∥F(q)[u(t) −C(q, P)(T−1
d (q) − I)G(q)u(t)]∥22,

=

N∑
t=1

∥F(q)[I −C(q, P)(T−1
d (q) − I)G(q)]u(t)∥22.

Substituting T−1
d (q) = [(G(q)Cd(q) + I)−1G(q)Cd(q)]−1 = I +

C−1
d (q)G−1(q) the criterion is then written as

JVRF(P) =
N∑

t=1

∥F(q)[Cd(q) −C(q, P)]C−1
d (q)u(t)∥22, (21)

where it is clear that if C(q, P̂) = C(q, P0) = Cd(q) then JVRF(P)
evaluates to zero, so the parameter vector P0 is the minimum of
the objective criterion for any chosen filter F(q). Thus, the pro-
posed optimisation problem (19) results in an unbiased estimate

of P0 when Assumption 1 is respected and there is no noise, that
is, BIAS = 0.

Observe that if C(q, P) is linearly parametrized then JVRF(P)
is quadratic on the parameters and a closed solution exists to the
optimization problem, which will be described in the sequence.
Another advantage of the proposed cost function (20) is that the
structure of the criterion is the same of the SISO VRFT, so that
they are exactly the same in the case of a SISO process. By do-
ing this, the proposed method can be classified as an extension
of the VRFT to the MIMO case that preserves all the properties
of the SISO VRFT when the process is SISO, but can also be
used to MIMO process and results in unbiased estimates to the
minimum of criterion (6) when Assumption 1 is respected and
the signals are noise free.

In the sequence we present how to deal with the cases where
Assumption 1 is not respected and when there is noise affecting
data. But before that, let us present a closed solution to the
problem (19).

Theorem 1. The solution of the optimisation problem (19) is
PF where

P̂F =



ρ11
ρ12
...
ρ1n

ρ21
ρ22
...
ρ2n
...
ρn1
ρn2
...
ρnn



=

 N∑
t=1

φ(t)φT (t)

−1 N∑
t=1

φ(t)w(t), (22)

and
w(t) = F(q)u(t), φ(t) = [A1 A2 · · · An],

Ax =


Fx1Ex(t)
Fx2Ex(t)
...

FxnEx(t)

 , Ex(t) =


C̄x1(q)ē1(t)
C̄x2(q)ē2(t)

...
C̄xn(q)ēn(t)

 (23)

for x = 1, 2, · · · , n.

Proof: See the Appendix. �

4.1. Filter design

As previously stated, when Assumption 1 is satisfied,
min JVRF(P) = min JMR(P) independently of the filter choice.
However, Assumption 1 is rarely satisfied, and in the case it
is not, the filter should be chosen to approximate the minima
of both cost functions, as done in the SISO case, to reduce the
bias.
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To do so, consider the MR criterion,

JMR(P) =
N∑

t=1

||[S d(q)G(q)Cd(q) −G(q)C(q, P)S (q, P)]r(t)||22,

=

N∑
t=1

||S d(q)[G(q)Cd(q) − S −1
d (q)G(q)C(q, P)S (q, P)]r(t)||22.

Using S −1
d (q) = G(q)Cd(q) + I the cost criterion is then written

as

JMR(P) =
N∑

t=1

||S d(q)[G(q)Cd(q)S (q, P) −G(q)C(q, P)S (q, P))]r(t)||22

=

N∑
t=1

||S d(q)G(q)[Cd(q) −C(q, P)]S (q, P)r(t)||22. (24)

Comparing (21) to (24) it is easy to see that if we could use the
optimal filter

F(q) = S d(q)G(q) (25)

and could apply the signal

u(t) = Cd(q)S (q, P)r(t) (26)

to obtain experimental data, then minimizing (21) would result
in the same controller as if minimizing (24).

However, observe that the filter (25) depends on the process
model, which is unavailable to the user. Of course, one can
always try to identify the process model and use it on the ex-
pression, but the procedure is not attractive to a data-driven ap-
proach. Also, (26) depends on Cd(q) and S (q, P), which are
also unknown. So, in the next subsection we develop a prac-
tical choice for the filter, which approximates some unknown
information and finally does not depend on the process model.

4.1.1. Practical choice
Observe that JVRF(P) (21) can be rewritten as

JVRF(P) =
N∑

t=1

∥F(q)Cd[I −C−1
d (q)C(q, P)]C−1

d (q)u(t)∥22, (27)

and that JMR(P) can be written as

JMR(P) =
N∑

t=1

||Td(q)[I −C−1
d (q)C(q, P)]S (q, P)r(t)||22. (28)

Suppose we could commute the term [I − C−1
d (q)C(q, P)]

in the cost functions above, the same procedure proposed for
MIMO IFT [12]. In this case, JVRF(P) would be given by

J̃VRF(P) =
N∑

t=1

∥[I −C−1
d (q)C(q, P)]F(q)u(t)∥22,

and JMR(P) would be given by

J̃MR(P) =

N∑
t=1

∥[I −C−1
d (q)C(q, P)]Td(q)S (q, P)r(t)∥22.

When N → ∞, both criteria can be expressed by their frequency
domain expressions using Parseval’s Theorem. In this case,

J̃VRF(P) =
1

2π

∫ π
−π

Tr
{
[(I −C−1

d C(P))F]Φ1/2
u

× Φ1/2
u [(I −C−1

d C(P))F]H
}

dω, (29)

and

J̃MR(P) =
1

2π

∫ π
−π

Tr
{
[(I −C−1

d C(P))TdS (P)]Φ1/2
r

× Φ1/2
r [(I −C−1

d C(P))TdS (P)]H
}

dω, (30)

where Tr is the trace operator, the superscript H indicates the
hermitian conjugate of a complex expression, Φr andΦu are the
power spectrum of r(t) and u(t) respectively, and Φ1/2

x denotes
a spectral factor of Φx.

Let the filter be chosen as

F(e ȷω) =Td(e ȷω)S (e ȷω, P)Φ1/2
r (ω)Φ−1/2

u (ω),
∀ω ∈ [−π, π], (31)

then J̃VRF(P) = J̃MR(P). Notice that the above filter is very
similar to the SISO VRFT filter (12), and that it depends
on the unknown quantity S (e ȷω, P). Now, if we approximate
S (e ȷω, P) ≈ S d(e ȷω), the same procedure of the SISO VRFT,
then

F(e ȷω) =Td(e ȷω)(I − Td(e ȷω))Φ1/2
r (ω)Φ−1/2

u (ω), (32)
∀ω ∈ [−π, π],

which is an implementable filter and equivalent to the filter used
in the SISO case (see (13)). So, we recommend the use of the
filter (32) when Assumption 1 is not satisfied to approximate
the minimum JVRF(P) to the minimum of JMR(P). Observe
that the estimate will be biased (compared to the MR controller)
since the proposed practical filter is developed using some ap-
proximations. In order to obtain unbiased estimates, one should
use the optimal filter (25)-(26), which depend on the unknown
quantities. We will demonstrate the use of the proposed practi-
cal filter on Section 5.

4.2. Dealing with noise
Under Assumption 1 and considering that the process noise is

zero, the solution (22) is such that C(z, PF) is equal to the ideal
controller Cd(q). In the practical situation, where the signals
are corrupted by noise, the solution (22) is biased even in the
case when Assumption 1 is satisfied, and we propose the use
of an instrumental variable technique to cope with the bias1. In
order to do so, an extra signal y′(t), which is correlated to y(t)
but uncorrelated to the noise present in the output, should be
obtained. Thus, the instrumental variable ζ(t) is defined as

ζ(t) = [A′1 A′2 · · · A′n] (33)

1Notice that if the ideal controller is not in the controller class, the bias will
only be reduced, but not eliminated.
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where A′x, x = 1, 2, · · · , n are similar to Ax (from φ(t)), but
formed with the signal y′(t) instead of y(t).

The solution of the optimization problem using the instru-
mental variable is

P̂IV =

 N∑
t=1

ζ(t)φ(t)T

−1 N∑
t=1

ζ(t)w(t). (34)

Observe that again the proposed approach to cope with the
bias introduced by the noise is very similar to the approach used
in the SISO VRFT. There are several choices to the extra sig-
nal y′(t) and we recommend the SISO VRFT articles for more
information [19, 20, 21, 11].

5. Application to Process Control

In order to illustrate the improvements of the VRFT method
proposed in this work for multivariable systems, a numerical
example and a practical application are presented. The goal is
to show that using the proposed method, the VRFT can be used
to tune multivariable controllers for a broader class of systems,
where the performance requirements can be chosen differently
for each output. We show that the proposed method yields the
ideal controller when Assumption 1 is satisfied, and that when
it is not, a proper filter can be used to enhance the results. We
also show the applicability of the method to a pilot plant.

5.1. Numerical example

The process considered in the example is a linear time-
invariant discrete-time process described by

G(q) =

 0.095q
(q−0.92)(q−0.8)

0.04q
(q−0.9)(q−0.85)

−0.03q
(q−0.92)(q−0.8)

0.05q
(q−0.9)(q−0.85)

 , (35)

and the closed-loop reference model is chosen as

Td(q) =
 0.2

q−0.8 0
0 0.4

q−0.6

 , (36)

both with sampling time of 1 second. Observe that this refer-
ence model represents different performance requirements for
each output. The literature method is not able to find the ideal
controller for this choice. Even though, we use the literature
method in order to visualize the improvements of our formula-
tion.

The ideal controller Cd(q) which leads to perfect matching is
given by

Cd(q) =

 1.681q2−2.891q+1.237
q2−q

−2.689q2+4.625q−1.979
q2−q

1.008q2−1.765q+0.7714
q2−q

6.387q2−11.18q+4.886
q2−q

 , (37)

where each subcontroller is Proportional-Integral-Derivative
(PID).

The effectiveness of the methods are appreciated by calcu-
lating a cost function which represents the cost of the error be-
tween the obtained closed-loop output y(t, P) and the reference

model response yd(t), which, for a TITO (two-input two-output)
system, is given by:

J(P) =
N∑

t=1

∥∥∥∥∥∥
[

y1(t, P)
y2(t, P)

]
−
[

yd1(t)
yd2(t)

]∥∥∥∥∥∥2
2
.

In this case, the closed-loop collected signals are obtained ap-
plying reference signals of 200 samples to both inputs. In the
first input, a unitary step is applied on sample 10 and in the
second input, the unitary step is applied on sample 100.

In this example, we consider the noise free case and ex-
plore the choice of the filter F(q) to approximate the minima
of JVRF(P) and JMR(P) when Assumption 1 is not satisfied. To
do so, we compare the results obtained with:

• Design 1: the literature method (J1(P̂)), where (15) is min-
imized;

• Design 2: the proposed method with a designed input sig-
nal u(t) = Cd(q)S d(q)r(t) (see (26)) and the optimal filter
(25) (J2(P̂));

• Design 3: the proposed method with the filter that depends
only on known quantities (32) (J3(P̂)).

The proposed method with the designed input signal and the
optimal filter is presented only to show the consequences of
commuting terms in the cost function, that is, the use of fil-
ter (32) in Design 3. For that reason, we use the exact model
of G(q) and Cd(q) to compute the filter and also approximate
S (q, P) ≈ S d(q) to compute the input signals in Design 2. The
filter used in the literature method is Td(q), but notice that it is
used to filter the input and output signals, differently from the
proposed method in this work.

For Design 1 and Design 3 we perform open-loop experi-
ments of 200 samples. In the first input, a unitary step is ap-
plied on sample 10 and in the second input, the unitary step is
applied on sample 100 (the same signals used to compute the
resulting cost function). In Design 2, these signals are filtered
by Cd(q)S d(q) and then applied as the input of the process. We
perform these three designs for different controller structures
and compute the obtained cost. The results are shown in Table
2.

Table 2: Calculated costs of closed-loop systems with different controllers ob-
tained using the literature method and the proposed method.

Controller J1(P̂) J2(P̂) J3(P̂)
[PID PID; PID PID] 0.1097 0 0
[PID PID; PI PID] 0.1225 0.0110 0.0220
[PID PI; PI PID] 0.2704 0.1822 0.2061

[PI PI; PI PI] 1.4153 1.0602 1.1053
[PID 0; 0 PID] 1.9354 1.5141 1.2949

[PI 0; 0 PI] 6.1916 4.5490 4.8738

First, our methodology has presented better results than the
literature one, in all the cases presented in Table 2. In the first
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example, the controller class (all subcontrollers are PID) is such
that Assumption 1 is satisfied, and our methodology is able to
find the ideal controller, differently from the literature. In the
subsequent controllers, Assumption 1 is no longer satisfied, and
we present cases where it goes from “almost satisfied” to “far
from satisfied”. Remember that, in all proposed filters, the ap-
proximation S (q, P) ≈ S d(q) was done, which is not valid when
the ideal controller is far from the chosen controller class. In all
cases presented in Table 2, using the “Practical choice” for the
filter have resulted in costs that are not far from the optimal
choice. Notice that we have commuted [I − C−1

d (q)C(q, P)] in
equations (27) and (28) to obtain an implementable filter. Ob-
serve, by the costs J1(P̂) and J3(P̂), that commuting terms only
to obtain and implementable filter (Design 3) is less sensitive
than commuting terms to obtain a different cost function. No-
tice also that a decentralized PI controller is not adequate to
control this system and its response is deteriorated, since the
costs are much larger than the ones presented with other con-
troller structures.

Fig. 1 presents the closed-loop step responses with the con-
trollers obtained from the literature method and the proposed
method for the second case presented in Table 2, that is, the
ideal controller is close to the controller class chosen. The lit-
erature method yields the controller

C1(q, P̂) =

 1.6807(q−0.92)(q−0.8)
q(q−1)

−1.3445(q−0.92)(q−0.6)
q(q−1)

0.28001(q−0.9467)
q(q−1)

6.1259(q−0.9089)(q−0.828)
q(q−1)

 ,
while the proposed method with the practical filter results in

C3(q, P̂F) =

 1.6807(q−0.92)(q−0.8)
q(q−1)

−2.6891(q−0.92)(q−0.8)
q(q−1)

0.26312(q−0.9698)
q(q−1)

6.0758(q−0.9135)(q−0.823)
q(q−1)

 .
Notice that the proposed method presents better decoupling,
which has resulted in a lower cost when comparing the response
with the desired one. The closed-loop responses with a decen-
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Figure 1: Output responses obtained with the design of a full controller com-
pared with the desired response.

tralized PID controller is presented in Fig. 2, for the literature
method and the proposed one. Notice that again the proposed
method yields better results. There is no decoupling, but the
disturbance from one output variable in the other one is smaller.
Besides, when there is a step change in one reference, the re-
lated output is closer to the reference model response for the
proposed method, compared to the response obtained with the

literature method. In this case, the literature method yields the
controller

C1(q, P̂) =

 1.5057(q−0.9574)(q−0.6072)
q(q−1) 0

0 6.4516(q−0.966)(q−0.5956)
q(q−1)

 ,
while the proposed method with the practical filter results in

C3(q, P̂F) =

 1.7514(q−0.919)(q−0.8038)
q(q−1) 0

0 5.9889(q−0.9065)(q−0.8376)
q(q−1)

 .
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Figure 2: Output responses obtained with the design of decentralized controller
compared with the desired response.

5.2. Practical application
We have also applied the proposed methodology to design

controllers of a pilot plant, where the goal is to control the level
of two tanks in a three tank plant. The same plant was used
in [28], where a SISO controller was obtained using the SISO
VRFT method considering the flow control of one tank. The
schematic diagram in Fig. 3 describes the main parts of the pro-
cess, considering a multivariable approach. The whole process
is built with of-the-shelf industrial equipments (pumps, valves,
sensors and tanks). The equipments in the process are intelli-
gent, since they are connected through the Foundation Fieldbus
protocol [29]. Tanks 1 and 2 are 70 liters each, while tank 3 is
a 250 liters container.

The water is pumped up from Tank 3 to Tank 2 through Valve
1, from Tank 1 to Tank 2 through Valve 2 and back to Tank 3 by
gravity. The liquid level of Tank 1 is y1(t) and the opening of
the Valve 1 is the manipulated variable u1(t). Accordingly, the
liquid level of Tank 2 is y2(t) and the opening of the Valve 2 is
the manipulated variable u2(t).

The objective of the control system is to control the level
of tanks 1 and 2 through the application of the MIMO VRFT
proposed in this work. In order to do that, an open-loop exper-
iment was performed, applying pseudo-random binary signals
(PRBS) in both inputs, for 8000 s, where the sampling time was
Ts = 1 s. The input signals are presented in Fig. 4 while the
output signals are presented in Fig. 5.

After collecting process data, we have to choose the con-
troller class and the reference model. Since we can only design
PI controllers, which is a constraint imposed by the system, we
choose a full controller, where all subcontrollers are PI. The ref-
erence model was chosen to obtain a closed-loop response that

8



Figure 3: Schematic diagram of the pilot plant.
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Figure 4: Input signals applied to the pilot plant.

is faster than the open-loop one. From a past open-loop exper-
iment, we know that the open-loop settling time for Tank 1 is
900 s and for Tank 2 is 700 s. Based on that, we chose

Td(q) =
 0.03

q−0.97 0
0 0.02

q−0.98

 , (38)

which represents performances with zero steady-state error and
settling time of 128 s for the first output and 193 s for the sec-
ond output. As in the practical case Assumption 1 is rarely
satisfied, we have used the practical filter proposed in Section
4.1.1. Besides, since the output noise is not significant, we have
not used instrumental variables in the estimate of the controller.
The obtained controller is

C(q, P̂F) =

 4.3893(q−0.9918)
(q−1) 3.12

−10.493(q−0.9933)
(q−1)

0.266(q−0.8282)
(q−1)

 ,
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Figure 5: Output signals of the pilot plant obtained with input signals presented
in Fig 4.

which results in the closed-loop performance presented in Fig.
6, with control signals presented in Fig. 7. Notice that even
though we have chosen to tune PI subcontrollers, in C12(q, ρ12)
the estimated zero canceled the integrator, and the controller
became only a Proportional controller. The obtained result is
very similar to the desired response, where the influence of one
loop in the other one is practically unnoticed, for both outputs.
The obtained cost was J(P̂) = 31.64 cm2, which was calculated
based on the signals presented in Fig. 6.
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Figure 6: Closed-loop response obtained with the estimated controller C(q, PF )
compared to the reference model response.

6. Conclusion

In this work we have presented an extension of the VRFT
methods to MIMO systems, which presents the same character-
istics of the SISO VRFT. The method presented here estimates
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Figure 7: Control signals of the closed-loop system with the estimated con-
troller C(q, PF ).

the ideal controller if it belongs to the controller class chosen
for any choice of the the reference model, different from previ-
ous methods presented in the literature. In the non ideal case,
that is, when the ideal controller does not belong to the cho-
sen controller class, a filter should be used to approximate te
minima of the VRFT cost function to the MR cost function.
The filter suggested in this work is equivalent to the SISO filter,
and can be used even when the ideal controller belongs to the
controller class. Besides that, equivalent to the SISO design,
if the signals are corrupted with noise, an instrumental variable
should be used.

A simulated example shows that when the ideal controller
is in the controller class, its estimation is unbiased through
the proposed method. It also shows that the results obtained
with the proposed practical filter is not far from what could be
obtained with the optimal filter, and it is suitable to approxi-
mate the minima of JVRF(P) to JMR(P). A practical application
shows the applicability of the method to real processes.

Appendix A. Proof of theorem 1

In the MIMO case, the structure of the controller (3) can be
defined as:

C(q, P) =


ρT

11C̄11(q) ρT
12C̄12(q) · · · ρT

1nC̄1n(q)
ρT

21C̄21(q) ρT
22C̄22(q) · · · ρT

2nC̄2n(q)
...

...
. . .

...
ρT

n1C̄n1(q) ρT
n2C̄n2(q) · · · ρT

nnC̄nn(q)

 , (A.1)

where P is the controller parameter vector to be calculated and
C̄xy are column vectors of fixed causal rational functions.

The filter is defined as

F(q) =


F11(q) F12(q) · · · F1n(q)
F21(q) F22(q) · · · F2n(q)
...

...
. . .

...
Fn1(q) Fn2(q) · · · Fnn(q)

 . (A.2)

The objective function (20) can then be written as,

JVRF(P) =
N∑

t=1

∥∥∥∥∥∥∥∥∥∥∥∥


w1(t)
w2(t)
...

wn(t)

 −


F11(q) F12(q) · · · F1n(q)
F21(q) F22(q) · · · F2n(q)
...

...
. . .

...
Fn1(q) Fn2(q) · · · Fnn(q)

 ·

·


ρT

11C̄11(q) ρT
12C̄12(q) · · · ρT

1nC̄1n(q)
ρT

21C̄21(q) ρT
22C̄22(q) · · · ρT

2nC̄2n(q)
...

...
. . .

...
ρT

n1C̄n1(q) ρT
n2C̄n2(q) · · · ρT

nnC̄nn(q)




ē1(t)
ē2(t)
...

ēn(t)


∥∥∥∥∥∥∥∥∥∥∥∥

2

2
(A.3)

where ē(t) = (T−1
d (q) − I)y(t).

The minimum of (A.3) will occur when the gradient of the
objective function is zero, that is

∇JVRF(P) =



∂J(P)
∂ρ11
∂J(P)
∂ρ12
...
∂J(P)
∂ρ1n
...
∂J(P)
∂ρ21
∂J(P)
∂ρ22
...
∂J(P)
∂ρ2n
...
∂J(P)
∂ρn1
∂J(P)
∂ρn2
...
∂J(P)
∂ρnn



= 0. (A.4)

Observe that (A.3) is quadratic and then (A.4) is a linear sys-
tem of equations:

∇JVRF(P) = 2
N∑

t=1

φ(t)φT (t)P − 2
N∑

t=1

φ(t)w(t) = 0,

with w(t) and φ(t) defined in the theorem statement.
The solution of the system of equations (A.4) is given by

(22). Q.E.D.
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