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Abstract

Model Reference control design methods fail when the plant has one or more non minimum phase zeros that are not included in the
reference model, leading possibly to an unstable closed loop. This is a very serious problem for data-based control design methods, where
the plant is typically unknown. In this paper, we extend the Virtual Reference Feedback Tuning method to non minimum phase plants.
This extension is based on the idea proposed in [12] for Iterative Feedback Tuning. We present a simple two-step procedure that can cope
with the situation where the unknown plant may or may not have non minimum phase zeros.
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1 Introduction

In the past two decades, a number of data-based control
design methods have been proposed [8,7,5,10], where a
parametrized controller structure is chosen a priori, and the
controller tuning is based directly on input and output data
collected on the plant without the use of a model of this plant.
These data-based controller tuning methods may fail when
the plant has Non Minimum Phase (NMP) zeros that are not
included in the desired reference model, leading possibly to
an unstable closed loop. The only safe way to avoid it is
by including the NMP zeros in the desired reference model.
Doing this a priori, when choosing the reference model, re-
quires the knowledge of this zero with good precision, which
in turn may be a rash hypothesis even for model-based de-
sign.

In the context of Virtual Reference Feedback Tuning (VRFT)
[5] the authors of [17] proposed the identification of the
process to find the possible NMP zeros. If there are NMP
zeros they are included in the reference model and then the
Virtual Reference Feedback Tuning is applied. The objec-
tive of this paper is to present an alternative way to obtain
the NMP zeros of the process within the framework of data-
based control design, avoiding the identification of the pro-
cess poles and stable zeros. We propose the use of a flexible
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reference model, inspired by a similar solution proposed for
Iterative Feedback Tuning (IFT) [7] to overcome the prob-
lems of NMP zeros [12]. The flexible reference model has
the same poles as the desired reference model, but the pa-
rameters of its numerator polynomial are free. The main dif-
ference with [17] is that we estimate fewer parameters, thus
enabling higher precision.

We propose a two-step procedure to deal with the situa-
tion where the unknown plant may contain NMP zeros. In
the first step a VRFT criterion is minimized simultaneously
with respect to the parameters of a flexible reference model
with free numerator coefficients and with respect to the con-
troller parameters. Under certain assumptions, we show that
if the true unknown plant has NMP zeros, then the estimated
numerator coefficients of the flexible reference model con-
verge to these NMP zeros. If this first step converges to a
numerator polynomial of the reference model that contains
NMP zeros, then the desired reference model is modified so
as to include these NMP zeros; the second step then con-
sists of minimizing the standard VRFT criterion with this
modified reference model. If the first step converges to a
numerator polynomial of the reference model that does not
contain NMP zeros, then the second step consists of mini-
mizing the standard VRFT criterion with the initial desired
reference model.

The paper is organized as follows. Definitions and the prob-
lem formulation are presented in Section 2. Section 3 re-
views the standard VRFT method and the proposed flexi-
ble criterion for VRFT is then presented in Section 4, while
Section 5 shows some examples of the application of the
proposed method. In the end, we present some conclusions.
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2 Preliminaries

Consider a linear time-invariant discrete-time single-input-
single-output process

y(t) = G0(z)u(t)+ v(t), (1)

where z is the forward-shift operator, G0(z) is the pro-
cess transfer function, u(t) is the control input and v(t) is
a quasi-stationary noise process which can be written as
v(t) =H0(z)e(t) where e(t) is white noise with variance σ2e .
Both transfer functions, G0(z) and H0(z), are rational and
causal and it is assumed that G0(z) has a nonzero static gain.

This process is controlled by a linear time-invariant con-
troller which belongs to a given - user specified - con-
troller class C that is linearly parametrized: C = {C(z,ρ) =
ρTβ (z),ρ ∈ Rn}, where β (z) is a n-column vector of fixed
causal rational functions, whose poles are strictly inside the
unit circle except for possible poles at z = 1. This class
is such that C(z)G0(z) has positive relative degree for all
C(z) ∈ C ; equivalently, the closed loop is not delay-free.
The control action u(t) can be written as

u(t) =C(z,ρ)(r(t)− y(t)), (2)

where r(t) is a reference signal, which is assumed to
be quasi-stationary and uncorrelated with the noise, that
is Ē [r(t)e(s)] = 0 ∀t,s. Here Ē[·] denotes Ē[ f (t)] !
limN→∞

1
N ∑

N
t=1E[ f (t)] with E[·] denoting expectation [13].

The system (1)-(2) in closed loop becomes

y(t,ρ) = T (z,ρ)r(t)+ S(z,ρ)v(t)

T (z,ρ) =
C(z,ρ)G0(z)

1+C(z,ρ)G0(z)
=C(z,ρ)G0(z)S(z,ρ)

where we have now made the dependence on the controller
parameter vector ρ explicit in the output signal y(t,ρ).

Model reference control design consists of specifying a “de-
sired” closed loop transfer function M̄(z), which is known
as the reference model, and then solving the following opti-
mization problem

min
ρ
JMR(ρ) (3)

JMR(ρ)! Ē
[

((T (z,ρ)− M̄(z))r(t))2
]

. (4)

The model matching controllerCMRd (z) is the one that allows
the closed loop system to match exactly M̄(z):

CMRd (z) =
M̄(z)

G0(z)(1− M̄(z))
. (5)

Should the model matching controller CMRd (z) be put in the
control loop, the objective function would evaluate to zero.

However, this model matching controller may not be causal,
or may produce an internally unstable closed loop system
through the cancellation of NMP zeros, both of which would
be disastrous. Thus, the choice of the reference model M̄(z)
must be made under some constraints to prevent these disas-
ters; these constraints are directly obtained from (5). In order
for CMRd (z) to be causal, the relative degree of M̄(z) cannot
be smaller than that of the plant G0(z). To prevent the unsta-
ble pole-zero cancellation, the reference model M̄(z) must
have the same unstable zeros as the plant. So, the choice of
the reference model requires a priori knowledge of an over-
bound for the relative degree of the plant and knowledge of
the location of its unstable zeros, if any.

Data-based control methods and direct adaptive control
methods address the minimization of the criterion (4) di-
rectly from data collected from the system, without deriving
a process model from this data [7,9,5,10]. It is then not
always possible to assume a priori knowledge of the ex-
istence of NMP zeros, and certainly not their positions in
case they do exist. The choice of an appropriate reference
model is then compromised. Thus most data-based design
methods tend to fail when applied to non minimum phase
plants. In this paper we propose a solution to this problem,
extending the VRFT [5] method to cope with NMP plants.
We start by presenting the standard VRFT method.

3 The standard VRFT method

The Virtual Reference Feedback Tuning Method (VRFT) is
a direct (non iterative) method that consists of minimizing a
criterion whose minimum is the same as that of JMR(ρ) un-
der certain ideal conditions. This new criterion is quadratic,
and thus easy to minimize whereas other data-based meth-
ods require iterative procedures and may suffer from con-
vergence to local minima [1]. The method has been applied
to different problems, including nonlinear and multivariable
systems [3,15]. An application to a real system is presented
in [4] and some thoughts regarding its application to unsta-
ble and noisy processes are presented in [16].

3.1 The ideal case

TheVirtual Reference Feedback Tuningmethodwas initially
proposed for an ideal case where the collected signals are
not affected by noise and the model matching controller (5)
belongs to the considered controller set, that is:

Assumption 1 CMRd (z) ∈ C or, equivalently,

∃ρd :C(z,ρd) = ρTd β (z) =CMRd (z)

The VRFT method can be described as follows. Through
either an open loop or a closed loop experiment, input data
u(t) and output data y(t) are collected on the actual process.
Given the measured y(t), we define the virtual reference
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signal r̄(t) such that M̄(z)r̄(t) = y(t). This means that, if
the system were in closed loop with the model matching
controller CMRd (z), and r̄(t) were applied to the reference,
the output data would be the same as the data y(t) that have
been collected in the experiment. Should the data have been
collected like this, the reference tracking error would have
been given by ē(t) = r̄(t)− y(t). This ē(t) is the signal that
would have fed the model matching controller in this virtual
experiment. We thus have input and output data (ē(t) and
u(t) respectively) of the model matching controller CMRd (z)
and we can use these data to identify it. The identification
is performed by minimizing the following criterion

JVR(ρ) = Ē [u(t)−C(z,ρ)ē(t)]2

= Ē
[

u(t)−
(

C(z,ρ)
1− M̄(z)
M̄(z)

)

y(t)
]2

(6)

SinceC(z,ρ) is linear in ρ , the criterion in (6) is a quadratic
function of the parameter vector ρ and hence the solution of
the optimization problem can be obtained through the appli-
cation of least squares, that is, by the following calculation:

ρ̂ = Ē
[

ϕ(t)ϕ(t)T
]−1 Ē [ϕ(t)u(t)] (7)

where ϕ(t) = β (z)ē(t). This is the key advantage of the
VRFT criterion (6) over the MR criterion (4), and hence
of VRFT over other data-based methods, like IFT or CbT,
which are iterative.

Under Assumption 1 the parameter value ρd is the global
minimum of both criteria, (4) and (6), since both evaluate to
zero at ρ = ρd . It is also easy to demonstrate that this global
minimum is unique, for both criteria, provided that the cor-
responding regression vector is persistently exciting [1,5].
Therefore, under quite reasonable assumptions the VRFT
method can identify the model matching controller (5) ex-
actly.

3.2 The non ideal case

Some techniques have been created to minimize the effects
of the noise on the collected data and the impossibility of
achieving the model matching controller. When Assumption
1 does not hold, the minima of the two criteria (4) and (6)
are not the same, but they can be made close to one another
by proper filtering of the signals u(t) and ē(t), as shown in
[5]. The appropriate filter L(z) is defined by:

|L(z)|2 = |1− M̄(z)|2|M̄(z)|2
Φr
Φu

, (8)

where Φu is the power spectrum of the signal u(t) and Φr
is the power spectrum of r(t). In this case, the parameter
vector ρ is estimated by

ρ̂ = Ē
[

ϕL(t)ϕL(t)T
]−1 Ē [ϕL(t)uL(t)]

where ϕL(t) = L(z)ϕ(t) and uL(t) = L(z)u(t).

In the presence of noise, an instrumental variable can
be used instead of the standard least squares solu-
tion, in which case equation (7) is replaced by ρ̂ =

Ē
[

ζ (t)ϕL(t)T
]−1 Ē [ζ (t)uL(t)] where ζ (t) is a n-vector of

instrumental variables; see [5] for details.

3.3 The NMP zeros problem

The VRFT method can be seen as a method that searches
the parameters of a fixed structure controller to make the be-
havior of the closed loop system as close as possible to the
closed loop system withCMRd (z). When the process has NMP
zeros and the reference model does not, the model matching
controllerCMRd (z) is unstable; therefore the closed loop sys-
tem withCMRd (z) is internally unstable. So, the parameters of
the VRFT controller will tend to values that make the closed
loop system unstable. This can occur even with a controller
structure with fixed stable poles because the source of the
problem is that the model matching controller is unstable,
as illustrated in the example in Section 5.1.1.

When the reference model does not possess the NMP zeros
of the plant, Assumption 1 is not satisfied, and then we
should use the filter L(z) of equation (8). However, the idea
of using this filter is based on the approximation C(z,ρ) ≈
CMRd (z), which makes no sense in this situation. To avoid this
problem, the NMP zeros of the plant must be included in the
reference model, thereby yielding a stable model matching
controller and a stable closed loop system. In the next section
we present a modification of the optimization criterion of
VRFT in order to successfully copewith possible NMP zeros
of the plant. A data-based framework will be used to obtain
the NMP zeros of the plant so that they can be included in
the reference model.

4 Flexible criterion for VRFT

In this section we propose the use of a reference model
with free parameters in the numerator to be used with the
VRFT method, based on the solution proposed in [12] for
the IFT method. The parametrized class of reference models
is described by

M = {M(z,η) = ηT F(z)}, (9)

where η ∈Rq is a vector of free parameters and F(z) is a q-
vector of rational functions. By replacing the fixed reference
model M̄(z) by M(z,η) and by applying the filter L(z), the
VRFT criterion (6) is changed into [2]

JVR0 (η,ρ) = Ē
{

L(z)
[

u(t)−
(

1−M(z,η)
M(z,η)

C(z,ρ)
)

y(t)
]}2

. (10)
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In this formulation the denominator of the reference model
is assigned, while the numerator is left free. We shall see that
the optimization of JVR0 (η ,ρ) can then “find” the zeros of the
plant, and particularly the NMP zeros. If the number of free
parameters q equals the order of the numerator of M(z,η),
the numerator is entirely free and the formulation becomes
conceptually equivalent to a pole assignment design.

In the standard VRFT method, the model matching hypoth-
esis - Assumption 1 - is crucial. Our analysis for this new
design criterion requires a similar assumption. Assumption
2 below states that there exists, within the class of refer-
ence modelsM considered, one reference model for which
model matching is possible.

Assumption 2 There exists a pair (η∗,ρ∗) such that
JVR0 (η∗,ρ∗) = 0, or, equivalently,

∃η∗
,ρ∗ : C(z,ρ∗) =

M(z,η∗)

[1−M(z,η∗)]G0(z)
. (11)

The next theorem shows that the reference model M(z,η∗)
that satisfies Assumption 2 contains all NMP zeros of G0(z).

Theorem 1 Let B(z) be the least common denominator of
the elements of β (z). Let Assumption 2 be satisfied. Then
the NMP zeros of G0(z) are also zeros of M(z,η∗).

Proof LetG0(z) = nG(z)
dG(z)

be a coprime factorization ofG0(z),
where nG(z) and dG(z) are polynomials. From (11) we have
that

C(z,ρ∗) =
nM(z,η∗)dG(z)

[dM(z)− nM(z,η∗)]nG(z)
, (12)

whereM(z,η∗) = nM(z,η∗)
dM(z) . SinceG0(z) has a nonzero steady

state gain, nG(z) has no zero at z = 1. Since the poles of
C(z,ρ∗) (i.e. the roots of B(z)) are either at z= 1 or strictly
inside the unit circle, B(z) and nG(z) have no common un-
stable roots. Therefore, since the left hand side of (12) is
stable, any unstable root of nG(z)must be canceled by a root
of nM(z,η∗). ✷

Under Assumption 2, it follows that

argmin
η,ρ

JVR0 (η ,ρ) = arg min
η,ρ

(η,ρ )̸={0,0}

J̃ VR
0 (η ,ρ) = (η∗

,ρ∗) (13)

where

J̃ VR
0 (η ,ρ) = Ē [L(z)M(z,η)u(t)−

L(z)C(z,ρ)(1−M(z,η))y(t)]2 . (14)

Given the linear parametrization of both the controller and
the reference model, J̃ VR

0 (0,0) = 0. Thus, the multiplica-
tion by M(z,η) has created an additional - and undesired -

global minimum at the origin. This is why the right hand
side of (13) is subjected to a constraint that excludes this
undesired minimum (η ,ρ) = {0, 0}. In most control ap-
plications, a natural constraint exists which automatically
does that: the reference model must have steady-state gain
M(η ,1) = 1. Note that, if M(z,η) = η1zq+η2zq−1+...ηq

zm+a1zm−1+...+am
, then

M(1,η) = η1+η2+...ηq
1+a1+...+am = 1, which needs at least one coef-

ficient of the η-vector to be nonzero, hence excluding the
undesired minimum.

It now follows fromTheorem1 that, under Assumption 2, the
minimization (13) of J̃ VR

0 (η ,ρ) yields a minimum (η∗,ρ∗)
such that M(z,η∗) contains all NMP zeros of G0(z). We
have thus produced a data-based optimization procedure that
detects the NMP zeros of the plant without utilizing a full
order model identification procedure, the only assumption
being that the controller structure is such that the desired
closed loop poles can be achieved. On the other hand, by
focusing on the identification of the NMP zeros only, better
precision in their location can be expected [6,14].

4.1 Implementation issues

Inserting (9) and C(z,ρ) = ρTβ (z) into (14) yields

J̃ VR
0 (η ,ρ) = E{ηTF(z)[uL(t)+ρTβ (z)yL(t)]

−ρTβ (z)yL(t)}2 (15)

Since the argument in (15) is bilinear in η and ρ , the mini-
mization of J̃ VR

0 (η ,ρ) can be treated as a sequence of least
squares problems [13]:

η̂(i) = argmin
η
J̃ VR
0 (η , ρ̂ (i−1)) (16)

ρ̂ (i) = argmin
ρ
J̃ VR
0 (η̂(i)

,ρ) (17)

where each least squares step has an explicit solution:

η̂(i) = Ē
{

[F(z)w(ρ̂ (i−1)
, t)][F(z)w(ρ̂ (i−1)

, t)]T
}−1

×

Ē
{

[F(z)w(ρ̂ (i−1)
, t)][C(z, ρ̂ (i−1))L(z)y(t)]

}

, (18)

ρ̂ (i) = Ē
{

[β (z)v(η̂(i)
, t)][β (z)v(η̂(i)

, t)]T
}−1

×

Ē
{

[β (z)v(η̂(i)
, t)][M(z, η̂(i))L(z)u(t)]

}

, (19)

w(ρ , t)! L(z)[u(t)+ρTβ (z)y(t)],
v(η , t)! L(z)[1−ηTF(z)]y(t)

This sequential least squares algorithm is guaranteed to con-
verge at least to a local minimum [13,18].

Theorem 2 The algorithm (16)-(17) converges to an ex-
tremum of J̃ VR

0 (η ,ρ).
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Proof It is clear from the algorithm that J̃ VR
0 (η ,ρ) is a

strictly decreasing function of the sequence η̂(i), ρ̂ (i); it can
thus be taken as a Lyapunov function. The convergence is
then a standard result from Lyapunov theory [11]. ✷

When the data are collected in closed loop, it is natural to use
the parameters of the controller that is operating in the loop
during the experiment as the initial value of the sequential
least-squares algorithm. But this is not the only possible
choice. The algorithm also needs an initial value for the
filter L(z), which depends on M(z,η). One possible choice
is to use M̄(z) for this purpose. It is also worth stressing that
even though the minimization algorithm is iterative, the data
from the system are collected just once, thereby keeping
the “one-shot” property of the VRFT method. Notice that if
M(z, η̂) contains NMP zeros, then the standard VRFT used
with the modified M̄m(z)will yield an unstable filter M̄−1

m (z),
when searching for r̄(t). This issue can be dealt with by
multiplying L(z) with an all-pass frequency weighting filter,
which leaves the objective function JVR(ρ) (6) unchanged;
the signals needed by the VRFT method are then obtained
from stable filters [7,17].

4.2 Two-step procedure

We have shown that the global minimum of the flexible
criterion J̃ VR

0 (η ,ρ) corresponds to a reference model that
contains the NMP zeros of the plant, if any. The two-step
procedure can then be described as follows.
Step 1.Minimize J̃ VR

0 (η ,ρ). If you want to perform a pole
assignment, let the entire numerator of M(z,η) free. If not,
let some parameters free in order to identify the NMP zeros,
if any. Call (η̂ , ρ̂) the minimizing parameters and check the
step response of M(z, η̂). If it is satisfactory, apply C(z, ρ̂)
to the system. If not, go to Step 2.
Step 2. If M(z, η̂), obtained in Step 1, has NMP zeros, then
modify the reference model M̄(z) so that it contains these
NMP zeros. If not, keep the initially chosen M̄(z). Then,
apply the standard VRFT with M̄(z).

5 Illustrative examples

In this section we present simulation studies using the flex-
ible VRFT scheme with the two-step procedure.

5.1 Process with one non-minimum phase zero

Consider that the process

G1(z) =
(z− 1.2)(z− 0.4)
z(z− 0.3)(z− 0.8)

(20)

is controlled by the PID controller

C(z,ρ) = ρTβ (z) = [ρ1 ρ2 ρ3]
[

z2
z2−z

z
z2−z

1
z2−z

]T
. (21)

A batch of data is obtained from a closed loop experiment,
where the reference signal is a sequence of steps and the
controller is Cinit(z) = −0.7(z−0.4)(z−0.6)

z2−z .

5.1.1 Assumption 2 is satisfied

Consider the following desired reference model, which has
been chosen in the absence of any knowledge on the NMP
zero of G1(z): M̄(z) = 0.0706z2

(z−0.885)(z2−0.706z+0.32) . The standard
VRFT criterion used with this reference model yields the
controller

C(z, ρ̂) =
−2.269(z2− 1.655z+ 0.7007)

z2− z
,

which causes the closed loop to be unstable, as can be seen
in the corresponding closed loop transfer function

T (z, ρ̂)=
−2.2693(z− 1.200)(z− 0.4000)(z2−1.655z+0.7007)
(z−0.3909)(z2−1.774z+0.7905)(z2−2.204z+2.470)

.

The system instability is due to the NMP zero present in
G1(z) but not in the reference model M̄(z). Note, however,
that it is not caused by an unstable pole-zero cancellation
between a controller pole and the NMP zero of G1(z). We
thus use the two-step procedure with the following flexible
reference model, which satisfies Assumption 2:

M(z,η) =
η1z2+η2z+η3

(z− 0.885)(z2− 0.706z+ 0.32)
. (22)

This flexible reference model has the same poles as the
desired reference model. We minimize J̃ VR

0 (η ,ρ) w.r.t η
and ρ using the iterative procedure (16)-(17). The values of
M(z, η̂(30)) and C(z, ρ̂ (30)) at iteration 30 are as follows:

M(z, η̂(30)) =
−0.590837(z− 1.199909)(z−0.402214)

(z− 0.885)(z2− 0.706z+ 0.32)
,

C(z, ρ̂ (30)) =
−0.590263(z− 0.800034)(z− 0.300411)

z2− z
.

Observe thatM(z, η̂(30)) reproduces both zeros ofG1(z)with
high precision, and the controller C(z, ρ̂ (30)) is such that
its zeros cancel the poles of the process. A good estimate
of the NMP zero is already obtained at iteration i = 21,
while convergence to the minimumphase zero is slower. This
observation is consistent with the findings of [14] where it is
shown that NMP zeros are easier to estimate than minimum
phase zeros. Since step 1 shows that the process actually has
a NMP zero at z = 1.199909, we change M̄(z) to include
this NMP zero and then use the standard VRFT. That is, a
new reference model is defined as

M̄m(z) =
−0.353195(z− 1.199909)z

(z− 0.885)(z2− 0.706z+ 0.32)
, (23)
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where the gain is chosen so that M̄m(1) = 1. The standard
VRFT method using (23) yields the controller

C(z, ρ̂) =
−0.451638(z− 0.803330)(z− 0.097992)

z2− z
.

Fig. 1 shows the step responses obtained at the end of Step
2 with T (z, ρ̂) where ρ̂ minimizes (7), as well as the step
response of M̄m(z). Observe that the responses of T (z, ρ̂),
obtained at the end of Step 2, and M̄m(z) are very similar.
Observe also that Step 2 has led to a closed loop response
which is closer to the first desired reference model M̄(z),
presenting a smaller inverse response compared to the one
obtained at the end of Step 1.
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Fig. 1. Closed loop responses T (z, ρ̂) obtained at the end of Step
1 and 2, compared to the modified reference model (23).

5.1.2 Assumption 2 is not satisfied

In the previous example, the reference model (22) was cho-
sen in such a way that the matching condition (11) is sat-
isfied for some (η∗,ρ∗) pair. Since the process is normally
unknown, Assumption 2 can typically not be satisfied. We
now examine how the method behaves in this situation.

For the same process (20) we choose a faster fixed reference
model M̄f (z) = 0.064z2

(z−0.6)3 , as well as a flexible one defined

as Mf (z,η) = η1z2+η2z+η3
(z−0.6)3 , for which Assumption 2 is not

satisfied. We minimize J̃VR0 (η ,ρ) w.r.t η and ρ using the
iterative procedure (16)-(17). The values of M(z, η̂(30)) and
C(z, ρ̂ (30)) at iteration 30 are as follows:

Mf (z, η̂(30)) =
−0.542229(z− 1.197399)(z−0.402066)

(z− 0.6)3
,

C(z, ρ̂ (30)) =
−0.523361(z− 0.793241)(z+ 0.009140)

z2− z
.
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Fig. 2. Closed loop responses T (z, ρ̂) obtained at the end of Step
1 and 2, compared to the modified reference model M̄f ,m(z).

Indeed, note that, even though Assumption 2 is not sat-
isfied, the NMP zero is still identified with good preci-
sion by the minimization of J̃ VR

0 (η ,ρ). We again apply
the second step of our procedure, modifying the fixed ref-
erence model to include the NMP zero just identified: we
choose M̄f ,m(z) = −0.324216z(z−1.197399)

(z−0.6)3 . Utilizing the stan-
dard VRFT procedure, we find the following controller

C(z,ρ) =
−0.335024(z+ 0.564947)(z−0.806625)

z2− z
.

Fig. 2 presents the modified referencemodel M̄f ,m(z) and the
step responses obtained in Step 1 and Step 2. Even though
Assumption 2 is not satisfied, and even though the NMP zero
imposed on the modified reference model M̄f ,m(z) is only
approximately correct, the achieved closed loop response is
very close to M̄f ,m(z). We also observe that the response
obtained in Step 2 presents again a smaller inverse response
compared to the one obtained at the end of Step 1.

5.2 Process with two minimum-phase zeros

Finally, we apply the method to an example in which the
plant zeros are both minimum phase:

G2(z) =
(z+ 0.2)(z− 0.4)
z(z− 0.3)(z− 0.8)

. (24)

This process is initially in closed loop with a PID controller
Cinit(z) = 0.7(z−0.4)(z−0.6)

z2−z , which we want to retune so that
the closed loop response is as close as possible to a given
M̄(z), using a PID controller C(z,ρ) of the form (21).
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5.2.1 Assumption 2 is satisfied

The desired fixed reference model is given by
M̄(z) = 0.4601z2

(z−0.6673)(z2+0.3063z+0.0766), and the flexible refer-
ence model is chosen as

M(z,η) =
η1z2+η2z+η3

(z− 0.6673)(z2+ 0.3063z+ 0.0766)
,

for which Assumption 2 is satisfied. After 40 iterations we
obtain

M(z, η̂(40)) =
0.668120(z− 0.415691)(z+ 0.178555)
(z− 0.6673)(z2+ 0.3063z+ 0.0766)

,

C(z, ρ̂ (40)) =
0.667786(z− 0.802044)(z− 0.306312)

z2− z
.

Since M(z, η̂(40)) does not have a NMP zero, we can safely
go to Step 2 and use the standard VRFT method without
modifying the referencemodel. The controller obtained with
M̄(z) is

C(z, ρ̂) =
0.462536(z− 0.299652)(z−0.761272)

z2− z
.

5.2.2 Assumption 2 is not satisfied

Suppose now that we choose another fixed reference model:
M̄f (z) = 0.216z2

(z−0.4)3 , and a flexible model having the same poles

as M̄f (z): Mf (z,η) = η1z2+η2z+η3
(z−0.4)3 . With Mf (z,η) and the

controller (21), Assumption 2 is not satisfied. Then Step 1
leads to

Mf (z, η̂(10)) =
0.498641(z− 0.693423)(z+ 0.412949)

(z− 0.4)3
,

Cf (z, ρ̂ (10)) =
0.495592(z− 0.681493)(z+0.203921)

z2− z
.

Since the first step computes not only the numerator coeffi-
cients of the flexible reference model, but also a correspond-
ing controller, one might consider applying this controller
Cf (z, ρ̂ (10)) to the plant, thereby avoiding the need for a sec-
ond step. Notice, however, that T (z, ρ̂ (10)) is far from the de-
sired M̄f (z) as shown by their step responses in Fig. 3. Thus,
the performance produced by the controller Cf (z, ρ̂ (10)) is
far from the desired performance specified by the original
reference model M̄(z), as illustrated in the top part of Fig. 3.
We thus proceed to Step 2 and apply the standard VRFT with
the fixed reference model M̄f (z). The controller obtained is

C(z, ρ̂) =
0.193075(z+ 0.599708)(z−0.789037)

z2− z
.

The closed loop response obtained withC(z, ρ̂) is compared
with that of the fixed reference model M̄f (z) in the bottom
part of Fig. 3.
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Fig. 3. Step responses of the fixed reference model M̄f (z), the
flexible reference model M(z, η̂(10)) and the closed loop response
T (z, ρ̂(10)) obtained after 10 iterations in Step 1 (top figure); step
responses of the original fixed reference model M̄f (z) and of the
closed loop system T (z, ρ̂) obtained in Step 2.

6 Conclusions and future work
We have extended the VRFT design methodology to cope
with NMP plants. This has been achieved through a flexi-
ble design criterion, in which the numerator of the reference
model is left free to be adjusted to the zeros of the plant
through the optimization procedure. We have proposed a
two-step procedure in which the possible presence of NMP
zeros in the plant, as well as their location, is detected in the
first step. The first step yields a reference model and a con-
troller, and can be used as the solution of a pole assignment
problem. If the closed loop response obtained in step one
is not satisfactory, the designer can still perform the step 2,
which becomes a classical VRFT, but with a criterion that
takes into account the presence of the NMP zeros, if any,
detected in the first step.

Relevant properties of the method have been established
through theoretical analysis. Extending this analysis to the
case where the matching controller is not in the controller
class, as well as adapting the method to deal with signals cor-
rupted by noise, are some of the aims of our future research.
Simulations have already shown good performance for the
situation where the matching condition is not satisfied.
References

[1] A. S. Bazanella, M. Gevers, L. Mišković, and B. D. O.
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