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Abstract This paper presents the identifiability anal-

ysis of a nonlinear model for a batch bioreactor and

the estimation of the identifiable parameters within the

prediction error framework. The output data of the ex-
periment are the measurements of the methane gas gen-

erated by the process, during 37 days, and knowledge

of the initial conditions is limited to the initial quan-
tity of chemical oxygen demand. It is shown by the

identifiability analysis that only three out of the eight

model parameters can be identified with the available
measurements and that identification of the remaining

parameters would require further knowledge of the ini-

tial conditions. A prediction error algorithm is imple-

mented for the estimation of the identifiable parame-
ters.This algorithm is iterative, relies on the gradient of

the prediction error, whose calculation is implemented

recursively, and consists of a combination of two classic
optimization methods: the conjugated gradient method

and the Gauss-Newton method.

Keywords Identifiability · Nonlinear Identification ·
Prediction Error · Anaerobic Digestion · Batch

Bioreactors

1 Introduction

Biological treatment of wastewater, along with the re-

sulting production of biogas, plays a major role in the

context of sustainable development. The biological treat-
ment of waste water may be achieved by anaerobic
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digestion in bioreactors, especially when dealing with

plant residues, food industry wastewater, animal wastes

(Bernard et al. 2001). Anaerobic digestion presents sev-

eral advantages with respect to aerobic treatment, among
which the higher energy production and the lower sludge

production are probably the most important ones (Bernard

et al. 2001; Sbarciog et al. 2010; Antonelli et al. 2003).
Obtaining dynamic models for anaerobic digestion pro-

cesses is of great importance considering the concep-

tion, operation and optimization of bioreactors, what
justifies the extensive studies in this field in the past

decades (Bernard et al. 2001; Haag et al. 2003; Bogaerts

and Vande Wouwer 2004).

Different models describing the anaerobic digestion

are presented in the literature, from simple models like

the one bacteria population model in (Andrews 1974),
to quite complex ones, like the ADM1 model established

by the IWA Anaerobic Digestion Modeling Task Group,

which consists of 32 state variables (Batstone et al.

2002). Although in principle a complex model could
represent the system more accurately, identification of

its large number of parameters up to a sufficiently good

accuracy can be a prohibitively hard task. For this rea-
son, it is found in the literature wide acceptance of

the representation of the anaerobic digestion process by

moderate dimension models, with four to six state vari-
ables, which represent the acidogenesis and methano-

genesis reactions (and ions balancing) (Bernard et al.

2001; Antonelli et al. 2003; Donoso-Bravo et al. 2011b).

In this work, the main goal is the identification of the
parameters in such models of moderate dimension, de-

rived from mass-balance calculations.

Identification of the parameters of these phenomeno-
logical models presents a number of challenges. The

question of whether or not it is possible to identify the

model parameters from some appropriate experiment

Usuario
Texto digitado
The final publication is available at Springer via http://dx.doi.org/10.1007/s40313-014-0129-3



2 L. Campestrini et al.

(the identifiability issue) is challenging in itself (Mar-

garia et al. 2001; Berthoumieux et al. 2012; Sedoglavic
2002; Karlsson et al. 2012). If the model is identifiable,

then there is the issue of how to generate such “appro-

priate experiments” (the informativity issue). Finally,
assuming that data from an appropriate experiment

have been collected, the issue of using these data in

such a way as to obtain the most accurate estimate of
the parameters is also an open one, given the highly

nonlinear nature of the models.

The parameter identification of mass balance mod-

els of continuous bioreactors has been performed in sev-

eral different ways, as summarized in (Donoso-Bravo
et al. 2011b). Often not all the model parameters can

be identified, and this feature of partial identifiability

in the different approaches has also been highlighted

in (Donoso-Bravo et al. 2011b). It is common place
to perform the parameter identification using steady

state data only, like in the classical paper (Bernard

et al. 2001). On one hand, this procedure is not fea-
sible for batch reactors, in which there is no manipu-

lated input to drive the reactor to a different steady

state - usually there is not even any steady state con-
dition possible. Indeed, batch reactors present different

challenges than continuous reactors, and do not seem

to have received the same attention in the past, even

though they are equally important. On the other hand,
disregarding the transient data and hence the infor-

mation that they carry about the parameters’ values

will result in an estimation that is less accurate than
could be achieved if the transient data were considered

appropriately. The prediction error framework in sys-

tem identification (Ljung 1999) is appropriate to do it,
and its principles shall be applied in this paper. A least

squares approach, which is reminiscent of prediction er-

ror methods, has been applied to linearized models in

(Donoso-Bravo et al. 2011a).

In this paper an identifiability analysis of the mass

balance model for a batch anaerobic digestion process is
performed. The bioreactors under study and the mass

balance models are described in Section 2. It is shown

in Section 3 that identification of different parameters
requires knowledge of different initial conditions. Then,

as described in Section 4, the application of a prediction

error method for the identification of the parameters in
this class of models is proposed. This is a nonstandard

prediction error problem, which becomes a highly non-

convex optimization problem. Accordingly, a dedicated

optimization procedure had to be developed for its so-
lution. This algorithm was presented firstly in (Cam-

pestrini et al. 2012). This optimization procedure uses

simulations of the system model to generate estimates

of the gradient of the prediction error, which is then

used in gradient based iterations.

Simulation results under different scenarios, presented

in Section 5.1, confirm the identifiability analysis and

shed light into their interpretation, setting the stage
for the practical application of the method. The simu-

lations also show that convergence of the proposed pre-

diction error method to the correct parameter values
of the identifiable parameters is possible even under

the practical circumstances of ignorance of the initial

conditions. Last, but of course not least, Section 5.2.1

presents the experimental setup, which consists of one
liter glass bottles (bioreactors) filled with substrate and

inoculum, from which the amount of methane is mea-

sured. Data have been collected from two reactors dur-
ing a 37 days experiment in which four output samples

per day were measured. The proposed method is ap-

plied to these data, resulting in the identification of the
parameters’ values. Although values for all the param-

eters result from the procedure, the theoretical analy-

sis shows that only three of them are meaningful. It is

shown, not surprisingly, that even having identified only
three parameters correctly, the model with the five in-

correct parameter values produces reasonably accurate

predictions of the output - that is, the remaining four
parameters are not that relevant for the purpose of pre-

dicting the methane production.

2 Bioreactor Model

Models of high complexity are not adequate to be used
in a control design (Bastin and Dochain 1990), since

they result in complex controllers. Besides, due to the

large amount of parameters to be estimated, its identifi-

cation may be so costly and imprecise that the complex-
ity of the model will not imply in an accurate descrip-

tion of the process. This motivates the use of models

with moderate complexity, but still sufficiently detailed
to describe the process’ dynamics with sufficient pre-

cision, so that these models can be used in a control

design, in order to obtain a controller that is as simple
as possible. A mathematical model with these charac-

teristics, acclaimed in the literature, is the model based

on mass-balance, composed by four states and one out-

put (Antonelli et al. 2003). The states are described by































ẋ1(t) = [ν1(S1(t))− αD]x1(t)

ẋ2(t) = [ν2(S2(t))− αD]x2(t)

Ṡ1(t) = D(Sin
1 (t)− S1(t))− k1ν1(S1(t))x1(t)

Ṡ2(t) = D(Sin
2 (t)− S2(t)) + k2ν1(S1(t))x1(t)

−k3ν2(S2(t))x2(t),

(1)
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where x1(t) (mg/L) is the concentration of acidogenic

bacteria, x2(t) (mg/L) is the concentration of meth-
anogenic bacteria, S1(t) (mg/L) is the concentration

of chemical oxygen demand (COD), S2(t) (mmol/L) is

the concentration of volatile fatty acids (VFA), Sin
1 (t)

(mg/L) and Sin
2 (t) (mmol/L) are the influent concen-

trations of S1(t) and S2(t) respectively, 0 < α ≤ 1 is

a proportionality parameter of experimental determi-
nation, D (day−1) is the dilution rate of the influents,

k1 (mg COD/mg x1) is the yield coefficient for COD

degradation, k2 (mmol VFA/mg x1) is the yield coeffi-

cient for fatty acid production, k3 (mmol VFA/mg x2)
is the yield coefficient for fatty acid consumption.

The nonlinear behavior is given by the two spe-

cific microbial growth rates, ν1(S1(t)) and ν2(S2(t)),
expressed by the Monod law

ν1(S1(t)) = µm1
S1(t)

KS1 + S1(t)
(2)

ν2(S2(t)) = µm2
S2(t)

KS2 + S2(t)
, (3)

where µm1 (day
−1) is the maximum acidogenic biomass

growth rate, µm2 (day−1) is the maximum methano-

genic biomass growth rate,KS1(mg/L) is the saturation
parameter associated with S1(t) and KS2 (mmol/L) is

the saturation parameter associated with S2(t).It is also

common in the literature ν2(S2(t)) expressed by the
Haldane law, where there is an extra parameter which

represents the VFA inhibition. However, when the sub-

strate concentration is low, the VFA inhibition is not
observed, and the Monod law is adequate to model the

bacteria growth.

The output of the model is the methane flow rate

qM (t), which is given by

qM (t) = k6ν2(S2(t))x2(t). (4)

The bioreactor produces mainly two gases, methane

and carbon dioxide. In order to obtain the methane
production, which can be used as a source of energy, it

is necessary to first measure the total gas flow and then

evaluate the gas composition.
This model is able to represent both continuous and

batch reactors. In a batch reactor, substrate and inocu-

lum are inserted into the bioreactor only at the onset of

the process, and for this reason are considered as initial
conditions for the states related to the substrate and

bacteria concentration, respectively. So, since there is

no input for the system, Sin
1 (t) = Sin

2 (t) = 0 andD = 0,
reducing the model (1) to






















ẋ1(t) = ν1(S1(t))x1(t)

ẋ2(t) = ν2(S2(t))x2(t)

Ṡ1(t) = −k1ν1(S1(t))x1(t)

Ṡ2(t) = k2ν1(S1(t))x1(t)− k3ν2(S2(t))x2(t).

(5)

3 Identifiability Analysis

Consider the following class of deterministic continuous-

time nonlinear model structures:

ẋ(t) = f(x(t), u(t), θ), (6)

y(t, θ) = h(x(t), θ)

where x(t) ∈ R
n is the system’s state, u(t) and y(t, θ)

are the system’s input and output signals respectively,

f(·, ·), g(·, ·) and h(·, ·) are given (i.e. known) analytical
vector fields; θ ∈ R

d is the parameter vector, whose es-

timation is the purpose of the identification procedure.

The family of all models (6) generated by all θ ∈ R
d is

called the model class M. In the same spirit as (Das-

gupta et al. 1991; Karlsson et al. 2012) and (Ljung and

Glad 1994), the following assumption on the input sig-

nal u(.) is made.

Assumption 1 The signal u(t) is analytic and is such
that the solution x(t) of (6) is an analytic function.

The virtue of this assumption is that knowing all

derivatives of an analytic signal at some time is equiva-

lent to knowing that signal everywhere, a property that

is instrumental to the development of various identifia-
bility tests.

Identifiability can be defined as follows.

Definition 1 (Identifiability)Consider the model (6)
at a given parameter value θ1. The model (6) is locally

identifiable at θ1 if there exists a δ > 0 and a data set

z(.)
∆
= {u(.), x0} such that, for all θ ∈ ||θ− θ1|| ≤ δ, the

outputs of the model (6) with these two different pa-
rameter values θ and θ1, both driven by the same data

set, are identical (i.e. y(t, θ) = y(t, θ1) ∀t ≥ 0) only if

θ = θ1. The model (6) is globally identifiable at θ1 if

the same holds for all δ > 0. The model is structurally
identifiable if it is identifiable at almost all θ.

This definition relies on the possible existence of an

appropriate data set z(.) which allows to differentiate

between different values of θ by measuring the output.
Note that this may require knowledge of the initial con-

ditions, as will be detailed shortly. Such a data set, when

it exists, is called informative.

Definition 2 (Informativity) The data set z(.)
∆
=

{u(.), x0} is locally informative at θ1 for the model

set (6) if there exists a δ > 0 such that, for all θ ∈

||θ − θ1|| ≤ δ, the outputs of the model (6) with these
two different parameter values θ and θ1, both driven

by this same data set z(.), are identical (i.e. y(t, θ) =

ŷ(t, θ1) ∀t ≥ 0) only if θ = θ1.
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These definitions exhibit the two ingredients that

are necessary for a meaningful identification: informa-
tivity, which is a property of the data set, and identifi-

ability, which refers to the possible existence of an in-

formative data set given a particular model structure,
and thus is a property of the model structure. Whereas

informativity depends on the true system, because it

generates the data, identifiability is a property of the
model structure (in particular, it does not depend on

the true system itself or in the satisfaction of Assump-

tion 1).

Notice that, in the case of the batch reactor, the
informativity must be provided by a data set of the

form z(.)
∆
= {0, x0}, since the system does not allow

the application of input signals. In the case of other

reactors, where input signals may me applied, the initial
conditions can be neglected if the data are collected

after the initial transient dies out.

Identifiability test

Given a parametrized class of models in state space

form (6), the j-th derivative with respect to time of

any order of y(t) evaluated at t = 0 can be expressed
by

y(j)(0) =
n
∑

i=1

(fi)
∂y(j−1)

∂xi

∣

∣

∣

∣

x=x(0),u(k)=u(k)(0),k=1,··· ,j

,

(7)

where fi is the ith element of the vector field f(·, ·) and

likewise for gi. This gives explicit expressions linking
the initial values of the state variables with the initial

value of a derivative with respect to time of any order

of the output of the system. The right hand side of (7)
is an expression in x(0) and θ, and the left hand side

is a measured quantity for any j. Taking derivatives

up to n + d (the state dimension plus the number of
parameters), this expression can be written in the form

Y = Y(x(0), θ), (8)

where Y is a column vector containing y(j)(0), j = 0, · · · ,

n+ d− 1, and the dependence on u(j)(0) has been ab-
sorbed into the notation of the vector valued function

on the right hand side. Identifiability at some θ1 is then

equivalent to the existence of a data set such that the
map Y(x(0), θ) in the right hand side of (8) is a local

diffeomorphism at θ1 (Karlsson et al. 2012).This will be

the case, according to the inverse function theorem, if
and only if the Jacobian matrix

Ja(x0, θ1) =
∂Y(x(0), θ)

∂(x, θ)

∣

∣

∣

∣

x=x0,θ=θ1

(9)

has full rank.
Thus, local identifiability at a given θ1 can be checked

by calculating the rank of the Jacobian for θ1 and some
initial condition x0. The model is identifiable if there

exists an experiment (that is, an initial condition) such

that the Jacobian is full rank. If it exists, such an ini-

tial condition provides an informative experiment. On
the other hand, structural identifiability can be checked

by calculating the rank of the Jacobian for a randomly

generated parameter value of θ. When this structural
identifiability test succeeds, that is, the corresponding

Jacobian matrix is full rank, then the parameter value

can be determined by solving equation (8).

However, the symbolic computation of the Jacobian

matrix in terms of (8) suffers from a computational
complexity problem and can become prohibitively costly

even for modestly sized problems. In this paper the al-

gorithm proposed in (Karlsson et al. 2012) is adopted,
which reduces this computational burden dramatically

via the computation of power series expansions of the

partial derivatives of the system’s output with respect

to x(0) and θ.

The results of the identifiability test allow to inter-
pret the results of the identification procedure correctly.

As will be shown later, knowledge of the states’ initial

conditions may be required for identification of the pa-

rameters. When the initial conditions are not known,
only a subset of the total parameters of a model are

correctly identified. Understanding this is necessary to

interpret correctly the identification results.

4 Identification of the model

This section presents a dedicated method to identify the

parameters of the batch reactor model (5), based on the
prediction error method for linear systems, widely used

in system identification. Since the bioreactor model is

nonlinear and not in standard black-box form, standard

identification software packages do not apply directly;
it is necessary to adapt the prediction error method as

will be shown in this section.

First of all, the model (5) needs to be converted

into a discrete-time model. Using Euler’s method, that
is ẋ(t) ≈ x(k+1)−x(k)

T
, where T is the sampling period,

yields the following model class

M =































x1(k + 1, θ) = x1(k, θ) + Tv1(k, θ)

x2(k + 1, θ) = x2(k, θ) + Tv2(k, θ)

S1(k + 1, θ) = S1(k, θ)− Tθ5v1(k, θ)

S2(k + 1, θ) = S2(k, θ) + Tθ6v1(k, θ)

−Tθ7v2(k, θ),

(10)
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where
{

v1(k, θ) = θ1
S1(k,θ)x1(k,θ)
S1(k,θ)+θ2

v2(k, θ) = θ3
S2(k,θ)x2(k,θ)
S2(k,θ)+θ4

and the output system’s predictor is given by

q̂M (k, θ) = θ8v2(k, θ). (11)

The parameter vector θ has been defined as

θ =
[

θ1 . . . θ8
]

=
[

µm1 KS1 µm2 KS2 k1 k2 k3 k6
]

. (12)

Using only output data qM (k), k = 1, . . . N and the
states’ initial conditions, the parameters of the model

(10) will be estimated through the prediction error method

(Ljung 1999). The prediction error estimate of the pa-
rameter vector θ̂N is given by

θ̂N = argmin
θ

J(θ) (13)

where

J(θ) ,
1

N

N
∑

k=1

(ε(k, θ))
2

(14)

and ε(k, θ) = qM (k)− q̂M (k, θ).

Standard system identification solutions are not ap-

propriate to solve this problem, since they are designed

to estimate black-box linear or nonlinear models with
standard structures, such as NARX, NARMAX or also

neural networks for the nonlinear case (Aguirre and Ja-

come 1998; Sjöberg et al. 1994). The identification of

the bioreactor model must be of a “grey-box” nature in
order to obtain the system’s physical parameters.

Concerning the identification of (10), the most com-

mon solutions found in the literature are obtained through

the use of algorithms that estimate the cost function

gradient numerically, without the use of an analytic ex-
pression of it (Donoso-Bravo et al. 2011b), which in-

creases the computational cost. Thus, since classical

optimization algorithms are based on the cost function
gradient, an analytic expression of this function allows

an improvement of the optimization process, making it

faster than the usual solutions. The cost function gra-
dient can be estimated as

∇J(θ) = −
1

N

N
∑

k=1

2ε(k, θ)
∂

∂θ
ε(k, θ)

= −
1

N

N
∑

k=1

2ε(k, θ)
∂

∂θ
q̂M (k, θ)

= −
1

N

N
∑

k=1

2ε(k, θ)(θ8
∂

∂θ
v2(k, θ) + v2(k, θ)

∂

∂θ
θ8).

From now on, in order to shorten the analytical ex-
pressions and thus improve readability, the dependence
on θ will be omitted. The term ∂

∂θ
v2(k, θ) can be esti-

mated as

∂

∂θ
v2(k) =

∂

∂θ
θ3

S2(k)x2(k)

S2(k) + θ4
+ θ3

[

−

S2(k)x2(k)

(S2(k) + θ4)2

(

∂

∂θ
S2(k)

+
∂

∂θ
θ4

)

+
x2(k)

S2(k) + θ4

∂

∂θ
S2(k) +

S2(k)

S2(k) + θ4

∂

∂θ
x2(k)

]

,

where the other partial derivatives are estimated as

∂

∂θ
x1(k + 1) =

∂

∂θ
x1(k) + T

∂

∂θ
v1(k)

∂

∂θ
x2(k + 1) =

∂

∂θ
x2(k) + T

∂

∂θ
v2(k)

∂

∂θ
S1(k + 1) =

∂

∂θ
S1(k)− Tv1(k)

∂

∂θ
θ5 − Tθ5

∂

∂θ
v1(k)

∂

∂θ
S2(k + 1) =

∂

∂θ
S2(k) + Tv1(k)

∂

∂θ
θ6 + Tθ6

∂

∂θ
v1(k)

− Tv2(k)
∂

∂θ
θ7 − Tθ7

∂

∂θ
v2(k)

∂

∂θ
v1(k) =

∂

∂θ
θ1

S1(k)x1(k)

S1(k) + θ2
+ θ1

[

−

S1(k)x1(k)

(S1(k) + θ2)2

(

∂

∂θ
S1(k)

+
∂

∂θ
θ2

)

+
x1(k)

S1(k) + θ2

∂

∂θ
S1(k) +

S1(k)

S1(k) + θ2

∂

∂θ
x1(k)

]

.

The optimization problem (13) is solved by an al-
gorithm that consists in a series of conjugate gradient

iterations followed by Gauss-Newton iterations (Cam-

pestrini et al. 2012) . It is known that the region of at-

traction of the conjugate gradient method is larger than
the Gauss-Newton, while on the other hand the Gauss-

Newton algorithm presents a higher convergence rate.

These properties motivate the combination of these two
algorithms that is applied here.

The conjugate gradient algorithm (Polak 1973) can

be described as

θ(i+ 1) = θ(i)− γ(i)D(i, θ),

where

D(i, θ) = ∇J(θ) + λD(i− 1, θ)

is the direction of the parameters update, γ(i) is a pa-

rameter that determines the size of the iteration step

and λ is a factor that states the variation rate of the

algorithm’s direction. When λ = 0 this algorithm re-
duces to the steepest descent method algorithm, whose

direction tends to make the convergence rate to become

very low. This happens mainly because the algorithm
evolves in a zigzag path. The larger λ is, the lower is the

variation of the algorithm’s direction, which minimizes

the zigzag effect. In this work the following parameters
were used:

λ = 4 (15)

γ(i) =
β

‖D(i, θ)‖
, (16)
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where the β factor is incremented in 1% of its value at

each iteration when the cost function value is decreased
(J(i + 1) < J(i)), and decremented in 1% in the cases

where the cost increases (J(i + 1) ≥ J(i)). A minor

variation was also implemented in the algorithm: if the
cost increases in an iteration, we make θ(i+ 1) = θ(i),

so the algorithm returns to a known point with a lower

cost.

When the convergence rate of the algorithm be-

comes too low, a switch to Gauss-Newton iterations is

made, which are described as

θ(i+ 1) = θ(i)− γR−1(θ(i))∇J(θ(i)),

where γ is the step size of the iteration and

R =

N
∑

k=1

(
∂

∂θ
q̂M (k, θ))(

∂

∂θ
q̂M (k, θ))T .

Notice that the calculation of the gradient (which

is necessary to estimate the parameter vector) needs

q̂M (k, θ), which in turn needs the estimate of all states.
So, when estimating θ(i+ 1) the simulation of the sys-

tem is done using θ(i) and, in the end of the iterative

procedure to estimate the parameter θ, an estimate of
the state variables of the system are also obtained.

5 Results

5.1 Simulated results

In order to validate the method and the analysis pro-

posed in this work, the identifiability test presented in
Section 3 together with the identification algorithm pre-

sented in Section 4 are applied to a simulated bioreac-

tor.

Suppose the real process is described by the model

(10), where the real parameter vector θ0 (Dochain 2008)

is given by

θ0 =
[

1.2× 100 7.1× 100 7.4× 10−1 9.28× 100

4.214× 101 1.165× 102 2.68× 102 4.53× 102
]T
(17)

and that the initial conditions are given by x1(0) =
0.2 mg/L, x2(0) = 0.8 mg/L, S1(0) = 9.5 mg/L and

S2(0) = 93 mmol/L. The process’ behavior is presented

in Figure 1, where the top figures present the behav-
ior of the states x1(k), x2(k), S1(k) and S2(k) and the

bottom figures present the production of methane.

Structural identifiability of the model (1) will be

determined through the method presented in Section 3.
The method will be applied in three different scenarios,

corresponding to different knowledge of the initial con-

ditions. After testing structural identifiability in each

scenario, the prediction error identification method de-

scribed in Section 4 is applied to estimate the parame-
ters. The identification is performed in each case with

a set of N = 72 samples of the output, where it is col-

lected during 3 days, every hour.

5.1.1 Knowledge of all initial conditions

Assuming that all four initial conditions x1(0), x2(0),

S1(0) and S2(0) are known a priori, the parameter vec-

tor θ can be recovered from (8) if the rank of the Ja-
cobian Ja is d = 8. The structural identifiability test

described in Section 3 is applied to this scenario and

results in a positive answer. That is, when all initial
conditions are known, all the parameters θ1 . . . θ8 can

be identified.

Next, the prediction error identification method has

been applied to the model (1) with the data presented in
Fig 1. In order to do that, the parameter vector θ must

be initialized. The following initialization was used

θ(0) =
[

1.32× 100 7.81× 100 8.14× 10−1 1.0208× 101

4.6354× 101 1.2815× 102 2.948× 102 4.983× 102

4.983× 102
]T

. (18)

After 100, 000 conjugate gradient iterations, 50, 000

Gauss-Newton iterations with γ = 0.001 and 50 Gauss-

Newton iterations with γ = 1, the correct values of
the parameters with 12 significant digits were obtained.

This result corroborates the result of the identifiability

test, since all the parameters are correctly estimated.
Since the simulated data were noise free, there is no

variance error in the estimate. In a practical situation,

even when all the parameters of the system are identifi-

able, the estimate will present some variance error due
to the unavoidable noise present in the measurements

obtained from the real process.

5.1.2 Knowledge of no initial conditions

A totally different scenario would be the lack of knowl-
edge of all initial conditions, that is, when one has ac-

cess only to the output signal of the process and do

not know the initial conditions of the states. Applying
the identifiability test to this scenario, it is determined

that the model is not structurally identifiable, and that

the only parameters that are identifiable in the system

are θ1 and θ3. So, even when the initial conditions of
the states are unknown, it is still possible to identify

the maximum biomass growth rates correctly for both

bacteria.
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Fig. 1 Behavior of the simulated batch reactor, described by (10) and (17): top figures present the state variables while
bottom figures present the production of methane (left figure) and the accumulated amount of methane (right figure).

To test this result, the identification of the system is

performed, as presented in Section 4. The initial condi-
tions are unknown, but they are necessary to initialize

the identification algorithm, so the following randomly

generated values were used [x1(0) x2(0) S1(0) S2(0)]
T

=
[

3.7374×10−2 3.9181×10−1 4.2330×100 6.0107×101
]T

.

The initial value of the parameter vector θ(0) is chosen
as in (18).

After 100, 000 conjugate gradient iterations, 50, 000

Gauss-Newton iterations with γ = 0.001 and 50 Gauss-

Newton iterations with γ = 1, the following estimate
was obtained

θ̂N ∼=
[

1.2000× 100 3.1636× 100 7.4000× 10−1

5.9977× 100 1.0048× 102 4.0292× 102

3.5366× 102 9.2493× 102
]T

.

The identification result again corroborates the identifi-

ability analysis, since θ1 and θ3 were estimated correctly

and the estimates of the other parameters are incorrect.

The prediction error cost (J(θ)) has vanished, which in-
dicates that the output of the estimated model correctly

predicts the system’s output - that is, q̂M (k, θ̂N ) ≈

qM (k, θ0) ∀k.

5.1.3 Knowledge of only S1(0)

In the previous examples two extreme situations were
presented: the case where all initial conditions are known

(and it is possible to identify all the parameters of the

chosen model) and the case where the initial condition
are unknown (and in this case it is possible to identify

only two parameters of the model). It is clear that the

more information about the initial conditions is avail-
able, more parameters can be identified.

In the practical example, as it will be seen in the

next section, only the information of S1(0) is avail-

able, the initial concentration of COD. Let us investi-
gate what are the parameters that can be identified in

this scenario. According to the identifiability analysis,

if S1(0) is the only initial condition that is known, then

it is possible to identify θ1, θ2 and θ3. So the knowledge
of S1(0) allows the correct estimate of θ2, in addition to

the estimation of θ1 and θ3 that could already be iden-

tified even without any knowledge of initial conditions.

The identification algorithm is applied, using the
correct initial condition for S1(0) and random values for

the other states initial conditions: [x1(0) x2(0) S1(0)

S2(0)]
T

=
[

1.4187× 10−1 6.0374× 10−1 9.5000× 100
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6.3212× 101
]T

. The initialization of the parameter vec-
tor was again used as in (18). After 100, 000 conju-

gated gradient iterations, 50, 000 Gauss-Newton iter-

ations with γ = 0.001 and 50 Gauss-Newton iterations
with γ = 1, the following estimate was obtained

θ̂N ∼=
[

1.2000× 100 7.1000× 100 7.4000× 10−1

6.3076× 100 5.9405× 101 1.1162× 102

2.4137× 102 6.0024× 102
]T

.

Note that the correct result for only the three first com-

ponents of the parameter vector is exactly what it has
been foreseen using the identifiability analysis. Again,

based on the value of the prediction error cost, which

is very close to zero, it is seen that the model is able
to predict the output of the system even though some

parameters are incorrect.

Based on these results, the identification algorithm
can now be applied to real data, collected from a real

batch reactor.

5.2 Practical application

The biogas quantification equipments, used to collect

the biogas produced by the bioreactors, are located

in the Bioreactors Laboratory, in Centro Universitário
UNIVATES, Brazil. The bioreactors are 1 liter glass

bottles, as presented in the bottom picture of Figure

2. Each bioreactor gas production is measured by an

equipment formed by a gas collector constituted by
glass U -shaped tube, an optical sensor, a styrofoam

ball and an electronic circuit that records the biogas

flow and calculates the generated gas volume. A set
of these equipments is presented in the top picture of

Figure 2. The operating principle of the device is the

fluid displacement, and the biogas quantification is per-
formed when the biogas, as it fills the U -shaped tube,

moves the fluid (water) down in one side and raises

the fluid level in the opposite side, which is detected

by the optical sensor, and the information is then sent
to the electronic circuit. The generated biogas volume

is determined by the combined gas law, which states

that the ratio between the pressure-volume product and
the temperature of a system remains constant. The ex-

periments were realized in a bacteriological incubator

adapted for this purpose, where it is possible to keep
the temperature constantly at 35oC inside the reac-

tors, which is the indicated temperature for the biogas

production (Bernard et al. 2001; Batstone et al. 2009;

Garćıa-Ochoa et al. 1999). As can be seen in the bottom
picture of Figure 2, the incubator contains several biore-

actors, and data from two of them have been collected.

Each bioreactor is filled with 420 mL of substrate and

Fig. 2 Bioreactors and equipment used to collect gas.

180 mL of inoculum, mixed and homogenized, obtained

from a large-scale biodigester. The substrate is formed

by sludge from the Wastewater Treatment Station of
Ecological Cooperative of Vale do Cáı (Ecocitrus), in

Rio Grande do Sul, Brazil. The qualification of the bio-

gas produced, measured in percentage of methane, was
performed from the injection of biogas at a specific sen-

sor for measuring the concentration of methane, named

Advanced Gasmitter. These measurements were real-

ized 4 times a day (every 6 hours) during 37 days, thus
generating a vector with N = 148 samples to be used

in the identification procedure.

5.2.1 Experimental results

From the experiments realized, one set of data was

used to perform the identification of the bioreactor, and

other set to validate the identified model. As stated
above, N = 148 samples of the output of the system

qM (k) were collected, and the known initial condition

was S1(0) = 74 mg/L, for both bioreactors. As seen in
the identifiability analysis, knowing only S1(0) allows

the correct identification of θ1, θ2 and θ3. The mea-

sured output of one of the bioreactors is the continuous

line presented in Figure 3. Using this set of data col-
lected from one bioreactor, the identification algorithm

presented in Section 4 was applied, where it was set

T = 1/4 day. To set up the identification procedure, the
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Fig. 3 CH4 measurements obtained from the experimental
data of one bioreactor compared with the output of the ob-
tained model.

simulation of the behavior of the system given by the

model (10) is needed. The only known quantity is the

initial condition of the state S1(k), so the other initial
conditions were chosen according to literature values

(Dochain 2008) as









x1(0)
x2(0)

S1(0)

S2(0)









=









0.2
0.8

74

93









. (19)

The initial values for the parameter vector were chosen

as

θ(0) ∼=
[

4× 10−1 2× 101 3× 100 6× 102

4× 10−1 7× 10−2 3× 100 3× 102
]T

. (20)

After 1, 000, 000 conjugated gradient iterations, 50, 000

Gauss-Newton iterations with γ = 0.001 and 50 Gauss-
Newton iterations with γ = 1, the following estimate

was obtained

θ̂N ∼=
[

4.2912× 10−1 1.3065× 101 2.6493× 100

5.7127× 102 3.1204× 10−1 6.2776× 10−2

3.1473× 100 2.7862× 102
]T

.

Hence, it can be said that for this bioreactor µm1 =
0.42912 day−1, KS1 = 13.065 mg/L and µm2 = 2.6493

day−1. The comparison between the real data and the

estimated model is presented in Figure 3, where the

cost (14) obtained in the estimation was J = 3159.72
mL2/L2/sample.

Because the data are very noisy, a Butterworth filter

of fifth order was used to filter the data, with cut-off fre-
quency ωc = 0.6π rad/sample, in order to compare the

response of the model with the real data. This compari-

son is presented in Figure 4 (bottom-left figure), and the

cost calculated using this filtered signal is J = 2323.39
mL2/L2/sample. Also shown in this figure are the esti-

mates of the states of the system (top figures), and the

comparison between the accumulated amount of CH4

of the real data and the estimate of the model (bottom-

right figure). Notice that, despite the noise present in
the measurements and the fact that most parameter

values are not correctly estimated, the model is able

to approximately represent the system’s output. The
validation of the obtained model was realized with the

other set of data, taken from a second reactor. The com-

parison of the output of the model, using (19) as the ini-
tial conditions with the filtered data1 was done regard-

ing to the measured output of the second bioreactor; the

cost is calculated as J = 2676.66 mL2/L2/sample. The

cost obtained is slightly higher than the one obtained
in the identification procedure, but the comparison be-

tween the real data and the model is similar to the one

presented in Figure 4.

In this practical problem, only the COD measure

at the initial of the experiment and the CH4 measure

during all the experiment were available. Although, in
the literature, it is shown that it is also possible to

measure the VFA using gas chromatography and the

total biomass x1(t) + x2(t), but not each biomass con-
centration separately. It is natural to think that with

this knowledge in the beginning of the experiment, it

would be possible to estimate more parameters. When

performing the identifiability test (presented in Sec-
tion 3) taking into account the knowledge of S1(0),

S2(0), x1(0) + x2(0) and only one parameter in the set

{θ5, θ6, θ7, θ8} (obtained from the literature or an ex-
tra experiment), it is possible to identify all parameters

of the model. Another way of identifying all parameters

is using the knowledge of S1(0), S2(0), one parameter in
the set {θ5, θ6}, and one parameter in the set {θ7, θ8}.

As future work, we search for these extra experiments

that will allow the complete identification of the model.

6 Conclusions

The identification of the identifiable parameters in a
four-state mass-balance model for a batch anaerobic

digestion reactor, using a customized prediction error,

was performed. The prediction error framework makes
use of the transient data for the identification, which is

a necessary feature in the identification of batch reactor

models. The measurements available allowed the identi-

fication of three parameters, and an important message
coming from the theoretical analysis is that it is im-

possible to identify the remaining parameters without

extra knowledge about the initial conditions or previ-
ous knowledge of some of the remaining parameters.

1 The data were filtered with the same Butterworth filter
used in the previous case.
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with the filtered real data.

Thus, identification of additional parameters would re-

quire additional measurements.
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