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Tuning of multivariable decentralized controllers
through the Ultimate Point Method

Lucíola Campestrini, Luiz Carlos Stevanatto Filho and Alexandre Sanfelice Bazanella

Abstract—A successful method for tuning single-loop PID
controllers is the Ultimate Point Method. This method is based on
the identification of the ultimate point of the process’ frequency
response followed by its shifting, through appropriate choices
of the controller’s parameters, to a specified location of the
complex plane. This paper presents an extension of the Ultimate
Point Method to the tuning of decentralized controllers for
multivariable processes.

Index Terms—Ultimate point method, PID control, multivari-
able decentralized control, relay feedback experiment.

I. I NTRODUCTION

Despite several decades of industrial PID control practice,
a large proportion of the control loops still presents poor
performance [1]. For many control loops, a good tuning
method is one that would require little information about the
process dynamics, so that this information can be obtained by
carrying out an experiment of limited complexity, followed
by the application of simple tuning rules. One of the most
successful methods is the one based on the knowledge of the
ultimate point of the process’ frequency response, that is,the
point at which its phase reaches−180o. The characteristics
of the frequency response at this point are usually called the
ultimate quantities of the process: the ultimate period and
gain. In SISO (single-input, single-output) control, well-known
formulae, such as Ziegler-Nichols and Tyreus-Luyben, use
these ultimate values in order to tune PI and PID controllers
[1], [2], [3]. Different names have been given to this method;
in this paper we refer to it as theUltimate Point Method.

In multivariable (MIMO - multiple-input, multiple-output)
processes, it is common practice to use the SISO procedure
and tuning formulae, followed by a “detuning”, which consists
in reducing the controller gains by some ad hoc factor [4]. This
gain reduction tends to enhance the SISO stability margins,
so that the coupling with other loops will - hopefully - not
destabilize the loop. Better tuning can be obtained by using
sequential controller tuning [2], [5], but this procedure may
require a large number of experiments. Other techniques have
been applied as well, mostly based on the SISO method and
experiments [6], [4]. Other methods deal with the identification
of more than one point of the frequency response followed by
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the controller tuning [7], [8], but these usually apply to cross-
coupled (that is, not decentralized) controllers. Also, there
are tuning methods that yield more efficient controllers, but
are much more demanding in terms of the data that must be
collected from the process’ operation [9].

More recently, extensions of the Ultimate Point Method for
decentralized control of multivariable processes have been pro-
posed, [10], [11], [12]. In these papers, the multivariablenature
of the problem is explicitly acknowledged: the MIMO ultimate
quantities are obtained by means of multivariable experiments.
Yet, this information is used for tuning the controllers with the
SISO formulae, a procedure that does not seem substantiated
by formal multivariable analysis. Moreover, MIMO processes
have infinitely many ultimate points, and the resulting closed-
loop performance is strongly related to the particular ultimate
point used. Hence, a better understanding of the MIMO control
problem and how to use the ultimate quantities to design
MIMO controllers is in order [13], [14].

In this paper we provide a consistent criterion for deter-
mining the settings of decentralized PID controllers basedon
the ultimate quantities identified. The tuning is made based
on a multivariable frequency response criterion: shiftingthe
ultimate point to an assigned location in the complex plane.
In so doing, like in the SISO case, adequate stability margins
can be obtained, provided that the frequency response of the
process satisfies certain properties. The closed-loop perfor-
mance obtained with this method presents little sensitivity to
the particular ultimate point used for the design.

We consider MIMO square processes described by a transfer
matrix

Y (s) = G(s)U(s) (1)

whereY (s) and U(s) are vectors withm components, rep-
resenting the Laplace transforms of the process output and
input respectively, andG(s) is the process’ transfer matrix.
The processes are assumed to be BIBO-stable.

We aim at designing decentralized controllers

U(s) = C(s)E(s) (2)
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whereE(s) = R(s)−Y (s), R(s) is the Laplace transform of
the reference signal, andpi(s), i = 1, . . .m are the - scalar -
transfer functions of the decentralized controllerC(s). We deal
with PID controllers, in whichpi(s) = kpi + kii

s
+ kdis, with

kpi, kii, kdi ∈ ℜ. Although in this paper we focus on PID
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Fig. 1. Relay feedback experiment.

controllers, the method can be applied to set the parameters
of any fixed structure controller.

The outline of the paper is as follows. Section II presents
the Ultimate Point Method for SISO systems and Section III
presents how the ultimate quantities are defined in MIMO
processes. The Multivariable Ultimate Point Method is pre-
sented in Section IV. As the method needs the knowledge of
the process’ frequency response at a given frequency, Section
V discusses the practical determination of this quantity. The
method is illustrated by two examples: in Section VI some
results of its application to a benchmark - the Wood and Berry
distillation column - are given and an additional, illustrative
example, is discussed in Section VII. Finally, Section VIII
presents the conclusions.

II. U LTIMATE POINT METHOD

The Ultimate Point Method for tuning SISO PID controllers
is a well-known method based on the knowledge of the
ultimate point of the process’ frequency response, which is
the point at which the process’ Nyquist diagram intersects
the negative real axis of the complex plane [1]. Associated
with this point are theultimate quantities: the ultimate gain
(Ku) and ultimate period (Tu) of the process. If the process
is put under purely proportional control the ultimate gain is
the gain for which the loop is at its stability boundary. The
ultimate frequency (ωu) is the frequency at which the crossing
of the negative real axis happens, and the ultimate period
is given by Tu = 2π/ωu. The ultimate quantities are more
conveniently obtained by the relay feedback experiment [1].
This experiment consists of a closed-loop bang-bang control,
as shown in Fig. 1. The control functionη(·) is described as

u = η(e) = −d sign(e) + bias (3)

where the bias therm should be chosen asbias = r/G(0) and
the relay amplitude is given byd = (u − u)/2 [1]. Then, if
the ultimate point does exist, a symmetric oscillation willbe
observed, and this oscillation presents the properties below.

Fact 1: [1] Let ωosc be the frequency of the oscillation
observed in the relay experiment anda be its amplitude at
the relay input. Since the ultimate frequency is such that
∠G(ωu) = −π, ωosc gives an estimate for the ultimate
frequency, so that both ultimate quantities can be obtained
by means of the relay experiment. Then

ωu = ωosc (4)

Ku =
4d

πa
(5)

Once the ultimate quantities are determined, the PID is
tuned according to given formulae. Different sets of tuning

TABLE I
Z IEGLER-NICHOLS AND TYREUS-LUYBEN FORMULAE.

Ziegler-Nichols kp Ti Td

PI 0.4Ku 0.8Tu 0
PID 0.6Ku 0.5Tu 0.125Tu

Tyreus-Luyben kp Ti Td

PI Ku/3.2 2.2Tu 0
PID Ku/2.2 2.2Tu Tu/6.3

TABLE II
DIFFERENT POINTS TO WHICH THE ULTIMATE POINT IS MOVED USING

Z IEGLER-NICHOLS AND TYREUS-LUYBEN FORMULAE

Ziegler-Nichols PI −0.4 + 0.08
PID −0.6 − 0.28

Tyreus-Luyben PI −0.31 + 0.023
PID −0.45 − 0.42

rules have been proposed over the years, aiming at different
performance criteria. We will explore two sets of formulae in
this paper: the originally proposed Ziegler-Nichols formulae
[3], which typically provide fast but oscillatory behavior, and
the more conservative Tyreus-Luyben formulae [15]. These
formulae are given in Table I where the transfer function of
the PID controller is given by

C(s) = kp(1 +
1

Tis
+ Tds) (6)

The PID controller dislocates the ultimate point into a stable
region, which is away from the point−1+0 and closer to the
origin of the complex plane. Each set of formulae corresponds
to moving the ultimate point to a given location in the
complex plane. A PI controller with Ziegler-Nichols tuning,
for example, haskp = 0.4Ku and ωuTi = (2π/Tu)0.8Tu =
5.02. Then, the PI controller transfer function, at the ultimate
frequency is

C(ωu) = kp(1 +
1

ωuTi

) = 0.4Ku(1 −


5.02
)

= Ku(0.4 − 0.08)

which results in the loop transfer function

L(ωu) = C(ωu)G(ωu) = −0.4 + 0.08.

That is, the ultimate point has been moved to−0.4 + 0.08.
Table II shows the points to which different formulae move a
process ultimate point.

Stability margins

From the Nyquist stability criterion it follows that if the
whole frequency response is kept away from−1 then the
closed-loop system will be stable and present adequate stabil-
ity (gain and phase) margins. This means that if the ultimate
point is away from−1 and closer to the origin, nearby points
of the frequency response will also be away and, provided
that the frequency response is “sufficiently smooth”, adequate
stability margins are obtained. Different smoothness assump-
tions on the frequency response have been made in order to
associate stability margins to the Ultimate Point Method [1],
[16], [2].



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 3

0

5

10

15

20

25

30

M
ag

ni
tu

de
 (

dB
)

10
−2

10
−1

10
0

10
1

−90

−45

0

45

90

P
ha

se
 (

de
g)

Fig. 2. Bode diagram of a PID controller for a system withKu = 2 and
ωu = 2π

10
rad/s.

If, for instance, the Ziegler-Nichols tuning is used in a PID
controller, then

C(s) = 0.6Ku(1 +
1

sπ/ωu

+
0.25πs

ωu

)

=
0.15πKu

ωu

(s + 2
π
ωu)2

s
(7)

That is, the controller presents a double zero at the fre-
quency− 2

π
ωu, at which frequency its magnitude is minimal

and equal to| C( 2
π
ωu) |= 0.6Ku. Hence the frequency

response of the controller has the form depicted in Figure 2.
Stability in closed-loop is obtained if the loop transfer

function C(ω)G(ω) satisfies

|C(ω1)G(ω1)| < 1 (8)

∠C(ω0)G(ω0)| ≥ −180o (9)

whereω1 andω0 are defined as∠C(ω1)G(ω1)| = −π and
|C(ω0)G(ω0)| = 1. With the Ziegler-Nichols tuning we have
by definition C(ωu)G(ωu) = −0.6 − 0.28 = 0.66 ∠ −
25.02o. If the process’ module drops faster than the growth of
the controller’s module for all frequencies aboveωu and its
phase drops faster than the growth of the controller’s phase
for all frequencies belowωu, then it is clear that conditions
(8) and (9) will be satisfied. We have thus established the
following fact.

Fact 2: Let G(s) be the transfer function of a BIBO-stable
SISO process and let this process be controlled by a PID
controller (6) with the Ziegler-Nichols tuning as given in Table
I. If the Bode plot of the process’ frequency response lies
completely outside the shaded area in Figure 3 then the closed-
loop system is BIBO-stable.

The constraints on the frequency response of the process
in the fact above have clear physical interpretation. Although
these conditions can usually not be directly checked for a given
process (checking them would require a rough model of the
process) they give a guideline to the class of processes to
which Ziegler-Nichols tuning can be successfully applied.For
instance, a delay-free stable transfer function with no zeros
will always satisfy these constraints provided that its poles

180o180o
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Fig. 3. Stability boundaries for the process’ frequency response

are not too far apart from each other. On the other hand,
several classes of processes are excluded, such as systems
with dominant time-delay and oscillatory systems with natural
oscillation frequency close to the ultimate frequency. Forthese
systems stability can not be guaranteed and for many among
them the closed-loop system will indeed be unstable, if a
Ziegler-Nichols tuning is applied.

Different sufficient conditions, with different degrees of
conservatism, can be obtained for the Ziegler-Nichols tuning,
as well as for other tuning rules [1], [16]. The same consid-
erations will apply regarding the closed-loop stability when
applying the Multivariable Ultimate Point Method.

III. U LTIMATE QUANTITIES IN MIMO PROCESSES

In multivariable processes like (1) the ultimate quantities
can be defined similarly to the SISO case [14].

Definition 1: Let a BIBO-stable square process withm in-
puts be controlled by purely proportional controlleru = −Ky,
with gain K = diag{k1 k2 . . . km}, ki ∈ [0,∞). Since the
process is BIBO-stable, the feedback system is BIBO-stable
for sufficiently smallK. Assume that there exists a constant
matrix Ku such that the closed-loop system is BIBO-stable
∀K = αKu, 0 < α < 1 and unstable forK = Ku(1 + ǫ),
with ǫ an arbitrarily small positive scalar; this valueKu is
called anultimate gainof the process. On the other hand, for
K = Ku the closed-loop system is on the verge of stability and
hence a sustained oscillation will be observed; the frequency
of this oscillation is called anultimate frequencyωu. �

The stability of MIMO square systems can be analysed
through the Nyquist criterion, as in the SISO case. Denote
λi(s), i = 1, 2, . . .m the eigenvalues ofG(s)K. The graphs
of λi(s) as s goes round the Nyquist contour are called the
characteristic loci. With these definition, the Nyquist theorem
for MIMO systems can be stated as follows.

Theorem 1 (Generalized Nyquist theorem):[8] If G(s) has
P0 unstable (Smith-McMillan) poles, then the closed-loop
system with return ratio−G(s)K is stable if and only if the
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Fig. 4. The ultimate gains in the TITO (two-input, two-output) case form a
curve in the parameter space.

characteristic loci ofG(s)K, taken together, encircle the point
−1 P0 times counterclockwise, assuming that there are no
hidden unstable modes. �

So, for a BIBO-stableG(s), the closed-loop system is stable
if and only if none of the characteristic loci ofG(s)K encircles
the point−1. As the gain matrixK is varied, the stability limit
is reached when at least one of the characteristic loci equals
−1 for some frequency. The gain for which this happens is an
ultimate gain.

The ultimate quantities are usually unique in the SISO
case; even when they are not unique, they are countable.
The situation is quite different in the MIMO case, since the
gain matrixK can be increased from 0 in infinite different
directions in the parameter space. It can be expected that a
differentKu andωu will be found for each different direction,
as depicted in Fig. 4. The set of all the ultimate gains is a curve
in the parameter space. In the more general (m > 2) case these
gains will form a surface of dimensionm−1; this surface will
be called theultimate surface[14].

If decentralized PID tuning is determined based on the
ultimate quantities using Ziegler-Nichols like formulae,as in
[10], [11], [12], [17], then two things must be realized. First,
all PID’s will be tuned based on the same ultimate frequency.
Second, the tuning will be dependent on which pair of the
ultimate quantities has been identified.

For simplicity, let m = 2. Consider that the gainK is
increased in the directionK = diag{k1 0}, that is, the
second loop is kept open, and the proportional gain in loop
1 is increased. The ultimate gain that will be obtained in this
experiment is the SISO ultimate gainku1 of the first loop.
Then, if the PID is tuned according to these ultimate quantities,
this tuning is the “correct” one for the first SISO loop. On the
other hand, if the gainK is increased asK = diag{0 k2}, then
the “correct” SISO tuning for the second loop is obtained. Ifa
different direction in the parameter space is picked to increase
the gainK, then it is expected to find a tuning that will not be
optimal for any of the two loops, but will represent some sort
of “average” of the two. The closer this direction is to either
one of the two SISO directions defined above, the closer the

Fig. 5. Decentralized relay feedback experiment.

tuning is expected to be to the corresponding “correct” SISO
tuning for that loop [10].

Once the ultimate quantities are identified, a gain suffi-
ciently smaller than the ultimate one should guarantee stability
and enough stability margins. However, this is not necessarily
true in the MIMO case. If the ultimate curve in the parameter
space is convex, then adequate stability margins are guaranteed
by taking a gainK = αKu for sufficiently smallα. However,
it is not possible to guarantee that the ultimate surface is
convex, or even smooth. As a matter of fact, there are cases in
which the ultimate surface is not convex, like in the benchmark
studied in Section VI.

The ultimate gains can be more conveniently obtained
by a Decentralized Relay Feedback (DRF) experiment [10],
illustrated in Fig. 5, and different ultimate points are identified
with different relay amplitudes [13], [14]. In DRF only one
experiment is performed, with all control loops in relay
feedback, that isui = η(ei) ∀i. Since all the input-output
pairs are connected, the behavior of the whole multivariable
system is observed in this single experiment.

IV. D ESIGN BASED ON THEMIMO ULTIMATE QUANTITIES

The Multivariable Ultimate Point Method is an extension
of the Ultimate Point Method to multivariable systems. The
main idea is to dislocate the ultimate point of the process to
another point in the complex plane, moving it to a position that
is away from the point−1 + 0 and closer to the origin [13].
Let us first present the TITO (two-input-two-output) case.

A. The TITO case

Consider a2 × 2 or TITO system. Then the loop transfer
function for K = Ku is given by:

G(ω)Ku =

[

g11(ω) g12(ω)
g21(ω) g22(ω)

] [

ku1 0
0 ku2

]

(10)

Let λ1(ω) andλ2(ω) be the eigenvalues of the loop transfer
matrix G(ω)Ku. Then, by the very definition of critical gain
Ku and critical frequencyωu, at least one of these eigenvalues
is equal to−1 for ω = ωu, that is, eitherλ1(ωu) = −1 or
λ2(ωu) = −1 or both. Replacing the proportional controller
with a decentralized dynamic controller in (10), we have

G(ω)C(ω) =

[

g11(ω) g12(ω)
g21(ω) g22(ω)

] [

p1(ω) 0
0 p2(ω)

]

(11)

The ultimate point is to be dislocated to a previously
chosen position in the complex plane, that is, at the ultimate
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frequencyωu, the eigenvalues of the loop matrix in (11) must
be located at these previously chosen locations. From (11),the
characteristic loci at the ultimate frequency are given by

det(λ(ωu)I − G(ωu)C(ωu)) = 0. (12)

The ultimate point design consists in finding controller’s
transfer functionsp1(s) and p2(s) such that the eigenvalues
λ(ωu) in (12) have the desired values, sayΛ1 and Λ2;
this is the core aspect of the MIMO ultimate point method.
Let us give a more detailed treatment for a particular way
of choosing these locations in the complex plane, namely
Λ1 = Λ2 = Λ. With this choice, expanding (12), and
definingg11u

= g11(ωu), g12u
= g12(ωu), g21u

= g21(ωu),
g22u

= g22(ωu), p1u
= p1(ωu), p2u

= p2(ωu) in order to
simplify the notation, we have

λ2 − (g11u
p1u

+ g22u
p2u

)λ+ (13)

(g11u
g22u

− g12u
g21u

)p1u
p2u

= 0

If the roots of (13) are given byΛ, then the characteristic
equation is given byλ2 − 2Λλ + Λ2, which yields

2Λ = g11u
p1u

+ g22u
p2u

(14)

Λ2 = (g11u
g22u

− g12u
g21u

)p1u
p2u

(15)

From (14), we have

p2u
=

2Λ

g22u

−
g11u

g22u

p1u
, (16)

and, substituting (16) into (15), we have

g11u

g22u

p2
1u

−
2Λ

g22u

p1u
+

Λ2

g11u
g22u

− g12u
g21u

= 0 (17)

Since (17) is a second order polynomial, we can get two
different tunings forp1u

. Note thatp1u
is a complex quantity.

Then, by solving (17) we have the setting of the tunings for
p1u

and, substituting into (16), two different tunings forp2u
,

also complex, are obtained. Therefore, we have two different
controllers that move the ultimate point to the desired location.

For PI controllers, from the solution of (17), we have

kp1 = Re{p1u
}, (18)

ki1 = −Im{p1u
}ωu, (19)

andp2u
gains are given by

kp2 = Re{p2u
}, (20)

ki2 = −Im{p2u
}ωu. (21)

For PID controllers, we obtainp1u
in the same way (from

(17)), but in this case

p1u
= kp1(1 + (Td1ωu −

1

Ti1ωu

)).

and we have

kp1
= Re{p1u

}, (22)

kp1
(Td1ωu −

1

Ti1ωu

) = Im{p1u
}. (23)

One degree of freedom still exists in the choice ofTi1 and
Td1. A possible choice is to setTd1 = Ti1

4 , which is usual

also in SISO design, causing the two zeros of the controller
to be equal, which guarantees smoothness of the controller’s
frequency response. In this case, (23) becomes

kp1
(Ti1ωu)2 − 4Im{p1u

}Ti1ωu − 4kp1 = 0 (24)

Thus, from (24) we have two solutions forTi1ωu, which are
always real and with opposite signs. We choose the solution
whereTi1ωu > 0, and from the relationski1 = kp1/Ti1 and
kd1 = kp1Ti1/4 we obtain the gains of the controllerp1u

.
Controllerp2u

is obtained from (16) and then its parameters
Ti2 andkp2 from (24)mutatis mutandis. As for PI controllers,
we find two different PID controllers that dislocate both
characteristic loci to the desired point.

B. The general case

For the general MIMO case, wherem may be different from
two, the same reasoning holds and the same procedure can
be applied. Of course, the equations become more complex.
Consider again the case in which all characteristic loci are
dislocated to the same desired pointΛ; for a TITO process, the
controllers are obtained through (14) and (15). For a process
of order m, the equations used to obtain the controllers are
given by

am−iΛ
i =

∑

Mi(G(jωu)C(jωu)), (25)

where Mi are the i-th order principal minors of the matrix
G(jωu)C(jωu) and each sum is taken over all principal
minors of order i. We note that in each term there are
alwaysCi

m = m!
i!(m−i)! such minors whereCi

m stands for the
combination ofm elements takeni at a time.

On the other hand,am−i are the coefficients of the charac-
teristic equation(s − λ)m, which can be obtained using the
Newton’s binomial formula, fori = 1 . . .m. So, we have

am−i = Ci
m =

m!

(m − i)!i!
. (26)

Like in the TITO case, this will result in a system of
equations with the controllers’ values as unknowns.

We present the case wherem = 3 for illustration. The
coefficients of the characteristic equation are given by (26)











i = 1 → a2Λ = C1
3Λ = 3Λ,

i = 2 → a1Λ
2 = C2

3Λ2 = 3Λ2,

i = 3 → a0Λ
3 = C3

3Λ3 = Λ3.

(27)

Equating (27) with (25) results in the following set of
equations:

3Λ =g11u
p1u

+ g22u
p2u

+ g33u
p3u

(28)

3Λ2 =(g11u
g22u

− g12u
g21u

)p1u
p2u

+

(g11u
g33u

− g13u
g31u

)p1u
p3u

+

(g22u
g33u

− g23u
g32u

)p2u
p3u

(29)

Λ3 =[(g11u
g22u

g33u
+ g21u

g13u
g32u

+ g31u
g12u

g23u
)

−(g11u
g23u

g32u
+ g21u

g12u
g33u

+ g31u
g13u

g22u
)]

p1u
p2u

p3u
. (30)
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The controller is obtained by solving (28-30) for the un-
knownsp1u, p2u andp3u. This results in six different solutions
- in contrast to the two solutions for the TITO case - and
it is not clear how to choose among them. Other design
choices also become significantly more involved for systems
of dimension larger than two. The handling of these choices
is by no means straightforward, so this is a topic that should
be further developed to make our method more practical for
systems with more than two inputs, although it is in principle
applicable to systems of any dimension.

V. PRACTICAL DETERMINATION OF G(ωu)

In the SISO ultimate point method, the design of the
controller requires the knowledge of the process’ frequency
response at the ultimate point, an information that is provided
by the relay feedback experiment. Accordingly, the MIMO
ultimate point method, as presented in the previous section,
requires knowledge of the transfer matrix at the ultimate
frequency. However, the decentralized relay feedback (DRF)
does not provide the whole transfer matrix, but only the
ultimate quantities of the process, which for MIMO processes
is not equivalent. There are different ways of determining
G(ωu) and the more accurate ones will be more demanding.
The aim of this section is to present a convenient procedure
to apply in operating systems, although the development of
optimized procedures remains an open issue.

Consider a TITO process. When the DRF is applied,u1(t),
u2(t), y1(t) andy2(t) are periodic signals. Letu1, u2, y1 and
y2 be the complex coefficients of the first harmonics of these
signals. Then we have:

{

y1 = g11(ωu)u1 + g12(ωu)u2

y2 = g21(ωu)u1 + g22(ωu)u2.
(31)

As we have two equations and four unknowns, it is not
possible to determineG(ωu). So, an additional experiment is
necessary. From the DRF test, we know the ultimate frequency
ωu of the system. So, if we apply an inputu1(t) = sin(ωut)
andu2(t) = 0 to the system, we have

{

y1 = g11(ωu)u1

y2 = g21(ωu)u1,
(32)

and it is easy to determineg11(ωu) andg21(ωu). Substituting
these quantities in (31), we determineG(ωu). However, this
additional experiment is an open-loop test, which is usually
inconvenient in real applications. In many situations, it is
difficult to apply this signal to the input of the process
depending on the software and hardware structure in the
control system implementation.

A more convenient solution is to apply a second DRF test
on the system, changing one relay’s amplitude in such a way
that the oscillation frequency does not change significantly.
Thus, we have



















yI
1 = g11(ω

I
u)uI

1 + g12(ω
I
u)uI

2

yI
2 = g21(ω

I
u)uI

1 + g22(ω
I
u)uI

2

yII
1 = g11(ω

II
u )uII

1 + g12(ω
II
u )uII

2

yII
2 = g21(ω

II
u )uII

1 + g22(ω
II
u )uII

2 .

(33)

where the indicesI and II mean first and second DRF tests
in the plant and the two oscillating frequenciesωI

u and ωII
u

are close to each other. If we make the approximationωI
u =

ωII
u , we have four equations and four unknowns, and we can

estimateĜ(ωu) by
[

ĝ11 ĝ12

ĝ21 ĝ22

][

uI
1 uII

1

uI
2 uII

2

]

=

[

yI
1 yII

1

yI
2 yII

2

]

ĜU = Y

Ĝ = Y U
−1

, (34)

Having these informations, the Multivariable Ultimate Point
Method can be used in order to obtain the controller. The
difference between the two frequencies will introduce an error
in the estimation ofG(ωu) but, as the oscillation frequencies
are quite similar, we can expect this error to be small [16]. The
case studies presented in the sequel show that this is indeed
the case and that this procedure can, in many cases, be used
to obtain the matrixG(ωu).

VI. CASE STUDY - DISTILLATION COLUMN

Aiming at demonstrating the use of the proposed design
method, this section presents some results obtained for the
control of the Wood and Berry distillation column, whose
transfer matrix is presented in (35). This process has been
widely used as a benchmark [11], [18].

G(s) =

[

12.8e−s

16.7s+1
−18.9e−3s

21s+1
6.6e−7s

10.9s+1
−19.4e−3s

14.4s+1

]

(35)

Since the process is2 × 2, we have infinite different combi-
nations ofku1 and ku2 that lead the process to the stability
limit, each one corresponding to a different ultimate point.

In order to illustrate the results, we have tested different
ultimate points. As the Multivariable Ultimate Point Method
needs the knowledge ofG(ωu), we have to find two different
but very close ultimate points and then estimateĜ(ωu) by
(34). We have estimated̂G(ωu) for two different frequencies,
which are presented in Table III, where

∆G =

∥

∥G(ωI
u) − G(ωII

u )
∥

∥

2

‖G(ωI
u)‖2

(36)

is the variation ofG due to the difference of the oscillation
frequencies obtained in each DRF test and

e =

∥

∥

∥
G(ωI

u) − Ĝ(ωI
u)

∥

∥

∥

2

‖G(ωI
u)‖2

. (37)

is the estimation error of̂G(ωu) related toG(ωu), ωu being
obtained from the first DRF test performed.

A. PID controller obtained using the Ziegler-Nichols formulae

This section presents some results obtained for the Wood
and Berry distillation column using the ultimate quantities
of the process and Ziegler-Nichols formulae. This tuning
procedure is adopted in several papers [18], [10], [11]. We
show the results for referencesr(t) = [1 0]

′ andr(t) = [0 1]
′.

Fig. 6 presents the behavior of the system with a PID
controller tuned through the Ziegler-Nichols formulae and
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TABLE III
Ĝ(ωu) FOR TWO DIFFERENT FREQUENCIES OFWOOD AND BERRY COLUMN.

experiment |u2|/|u1| ωu Ĝ(ωu) ∆G e (%)

1 1.9371 0.4946
Ĝ1 =

[

−0.5554 − 1.4295 1.7820 + 0.3223
0.1784 + 1.1898 2.6252 + 0.5941

]

2.2 0.6
2 0.9489 0.4931

3 3.5303 0.5228
Ĝ2 =

[

−0.5843 − 1.3663 1.7265 + 0.2054
0.2731 + 1.1438 2.5441 + 0.4183

]

7.0 6.6
4 0.6659 0.5106
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Fig. 6. Step response of the system with PID tuned using Ziegler-Nichols
formulae and ultimate pointKu = [0.42 − 0.30] andωu = 0.4882 rad/s.
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Fig. 7. Step response of the system with PID tuned using Ziegler-Nichols
formulae and ultimate pointKu = [1.27 − 0.25] andωu = 0.5129 rad/s.

the ultimate quantitiesKu = [0.42 − 0.30] and ωu =
0.4882 rad/s. Note that the transient performance obtained
is very good. However, for a PID controller tuned based on
another point of the ultimate surface,Ku = [1.27 − 0.25] and
ωu = 0.5129 rad/s, the system became unstable, as shown in
Fig. 7. These results show that the SISO tuning is too risky,
due to the non-existence of a full multivariable analysis to
justify the tuning procedure.
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Fig. 8. Step responses of the system with PID 1 and PID 2, obtained based
on Tyreus-Luyben point.

B. PID controller obtained with Multivariable Ultimate Point
Method

Next, we have found a PID controller that moves the
characteristic loci to the point−0.45 − 0.42, which is the
equivalent of Tyreus-Luyben point for the SISO Ultimate
Point Method. As (23) yields two solutions, Fig. 9 presents
the characteristic loci of the system with each one of the
controllers inserted.

The outermost characteristic loci of both systems - system
controlled by PID 1 and system controlled by PID 2 - cross
the circle of unitary radius approximately at the same point.
At every point of this circle, the magnitude of the system’s
response is equal to one and the phase margin is given by
the angle between the crossing of the outermost characteristic
locus with the circle of unitary radius and the negative real
axis. This means that the phase margin of both systems is
the same. Table IV presents the controllers’ gains and the
stability margins and Fig. 8 presents both systems responses
for different references. As can be seen in Table IV, the phase
margins are almost the same for the two controllers - close to
33o - but PID 2 presents a worse gain margin. The effect of this
fact can be seen in the step responses of the systems presented
in Fig. 8, in whichy2(t) of the system controlled by PID 2
presents a significant overshoot for referencer = [0 1]′. Fig. 8
presents the step responses of the system with the controllers
obtained withĜ1(ωu).

The performance of the system can be improved through



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 8

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1 charac. locus 1 − PID 1
charac. locus 2 − PID 1
charac. locus 1 − PID 2
charac. locus 2 − PID 2
− 0.45 − 0.42j (T−L)
circle of unitary radius

Fig. 9. Characteristic loci of the distillation column withboth PID controllers, designed with the proposed method.

TABLE IV
PID CONTROLLERS’ GAINS OF THE SYSTEMS PRESENTED INFIG. 8.

Controller kp1 ki1 kd1 kp2 ki2 kd2 GM ΦM

PID 1 0.5823 0.2247 0.3773 -0.0860 -0.0135 -0.1374 2.57I 33.25o

PID 2 0.1435 0.0623 0.0826 -0.3123 -0.0434 -0.5617 1.23I 32.59o

TABLE V
PID CONTROLLERS’ GAINS THAT DISLOCATE THE ULTIMATE POINT TO−0.2 − 0.3.

Ĝ Controller kp1 ki1 kd1 kp2 ki2 kd2 GM ΦM

1 PID 1 0.3663 0.1102 0.3044 -0.0432 -0.0051 -0.0912 3.8760I 42.50o

1 PID 2 0.0929 0.0311 0.0693 -0.1510 -0.0155 -0.3671 1.8975I 45.78o

2 PID 1 0.3803 0.1149 0.3147 -0.0416 -0.0045 -0.0952 3.2457I 43.05o

2 PID 2 0.0968 0.0315 0.0742 -0.1493 -0.0147 -0.3796 1.8325I 47.09o

the choice of another point in the complex plane, more
conservative than Ziegler-Nichols and Tyreus-Luyben ones.
Several controllers were designed for different points in the
complex plane (Λ′s) and Figs. 11 and 12 present the step
responses of the system with PID 1 and 2, respectively, that
dislocate the ultimate point to−0.2 − 0.3. Table V presents
the controllers’ gains and stability margins. In this case,we
present the controllers obtained witĥG1(ωu) and Ĝ2(ωu),
which correspond to two different ultimate points. Different
controllers were designed, with different ultimate points, and
all these controllers yield similar results.

The system performances corresponding toĜ1(ωu) and
Ĝ2(ωu) are not visually distinguishable, reinforcing the fact
that the choice of the “right” ultimate point loses importance
when the MIMO ultimate point method is applied. This is
also verified by the controllers’ gains obtained for different
ultimate points, which are very similar.

Also, as the point in the complex plane chosen is more
conservative than the one used before, there is a significant

increase in the stability margins; step responses just validate
that.

C. PI controller obtained with Multivariable Ultimate Point
Method for one characteristic locus

Let us present a simpler alternative to the previous choice of
dislocation for the ultimate point. The stability limit is usually
reached when only one characteristic locus crosses the point
−1+ 0. If we assume that the other characteristic loci are far
enough from−1, then the insertion of a controller in the loop,
however changing the size and shape of them, should not make
them involve−1. In this case, we may concern ourselves only
with the “critical” characteristic locus, that is, the one that
crosses−1, and move only this one to a specified location in
the complex plane [13].

We apply this idea to the case study to find a controller that
moves the ultimate point of the characteristic locus that crosses
the point−1+0 to −0.40+0.08, which is the equivalent of
Ziegler-Nichols point for SISO Ultimate Point Method using
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Fig. 10. Characteristic loci of the distillation column with the ultimate gains and with PI controller designed with theproposed method for one characteristic
locus.
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Fig. 11. Step response of the system with PID 1 controller that dislocates
the ultimate point to−0.2 − 0.3.

PI control. Fig. 10 presents the characteristic loci of the system
with the ultimate gain and with the PI controller inserted; Fig.
13 presents the step response of the system with the controller
obtained usingĜ1(ωu); Table VI presents the controller’s
gains.

The step responses shown in the results present good
performance: the overshoot is less than 10% and the settling
time is around40s. As can be seen in Fig. 10, the outermost
characteristic locus from the system with PI crosses the circle
of unitary radius far from the point−1 + 0, and the stability
margins can be easily calculated from the Nyquist diagram
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Fig. 12. Step response of the system with PID 2 controller that dislocates
the ultimate point to−0.2 − 0.3.

presented in Fig. 10:

ΦM = 38.53o GM = 2.08I.

TABLE VI
PI CONTROLLER’ S GAINS OF THE SYSTEM PRESENTED INFIG. 13.

kp1 ki1 kp2 ki2

0.1840 0.0151 -0.1214 -0.0100
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Fig. 13. Step response of the system with PI controller obtained through the
Multivariable Ultimate Point Method based on Ziegler-Nichols point.

VII. CASE STUDY - PROCESS II

In this section, we present some results obtained for another
process, whose matrix transfer function is presented in (38).
This process was also used in [17], [18], and is considered to
have strong coupling.

G(s) =

[

0.5
(0.1s+1)2(0.2s+1)2

−1
(0.1s+1)(0.2s+1)2

1
(0.1s+1)(0.2s+1)2

2.4
(0.1s+1)(0.2s+1)2(0.5s+1)

]

(38)

First of all, we have estimated̂G(ωu) for different ultimate
frequencies through DRF tests. Two of them are presented in
Table VII.

The controller design for Wood and Berry distillation col-
umn, in the previous section, presented better results withthe
application of the method that tunes a PID which dislocates
both characteristic loci to a desired point. This is mainly due
to the fact that, regardless of the ultimate point used, similar
performances are obtained, i.e., similar stability margins. The
choice of the desired point in the complex plane is what
determines how large these margins are.

Another important point to study is the influence of the
error in the estimation of̂G(ωu). Fig. 14 presents the Nyquist
diagrams of the systems controlled by PID 1, obtained with
G(ωu) directly from the transfer function (38) and with
Ĝ1(ωu) and Ĝ2(ωu), which presents a larger estimation
error. The design aims to dislocate the ultimate point to
−0.45−0.42. Although the tuning that useŝG1(ωu) does not
reach exactly the desired point, the resulting stability margins
are indistinguishable from the ones obtained with the real
G(ωu). The tuning obtained for̂G2(ωu) places the ultimate
point even farther from the desired location. In this case, the
gain margin has been unchanged, but the phase margin has
been decreased significantly for PID 1.

Besides, Fig. 15 presents the Nyquist diagrams for the
same design, but in this case we compare the design results
when PID 2 is applied. It can be seen that the estimation
error has a large influence in the tuning method, which is
unable to reach the desired point in the complex plane but, by
the other hand, the stability margins have not been changed

significantly. Table VIII presents the controller gains, obtained
with G(ωu), Ĝ1(ωu) and Ĝ2(ωu), as well as the stability
margins obtained with each controller. It can be seen that
PID 2 seems to be the best controller whatever estimation
of G(ωu) is used for this process. Thus, if we choose PID 2,
there is no significant influence of the estimation error in the
performance of the system. This can also be seen in Figs. 16
and 17, which present the system response when the controller
PID 2 is applied and the estimationŝG1(ωu) and Ĝ2(ωu),
respectively.
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Fig. 14. Characteristic loci of Process II with PID 1, when using the real
G(ωu) and the estimationŝG1(ωu) and Ĝ2(ωu).
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Fig. 15. Characteristic loci of Process II with PID 2, when using the real
G(ωu) and the estimationŝG1(ωu) and Ĝ2(ωu).

VIII. CONCLUSIONS

An extension of the Ultimate Point Method for multivariable
systems has been proposed, which consists in dislocating the
ultimate point to a given location on the complex plane. Differ-
ent locations on the complex plane can be chosen. In the SISO



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 11

TABLE VII
Ĝ(ωu) FOR TWO DIFFERENT FREQUENCIES OF(38).

experiment |u2|/|u1| ωu Ĝ(ωu) ∆G e (%)

1 4.0947 4.4366
Ĝ1 =

[

−0.1520 − 0.1743 0.1502 + 0.4890
−0.1531 − 0.4845 −0.5012 − 0.0631

]

0.7 0.7
2 0.7544 4.4211

3 0.6250 4.4927
Ĝ2 =

[

−0.1736 − 0.1729 0.1758 + 0.4491
−0.1460 − 0.4981 −0.4537 − 0.0142

]

8.4 8.3
4 47.1515 4.6776

TABLE VIII
PID CONTROLLERS’ GAINS FORPROCESS IITHAT DISLOCATES THE ULTIMATE POINT TO−0.45 − 0.42.

G Controller kp1 ki1 kd1 kp2 ki2 kd2 GM ΦM

G(ωu) PID 1 5.0803 11.4042 0.5658 0.2066 0.8948 0.01192.44I 24.16o

G(ωu) PID 2 0.1156 2.4170 0.0014 1.7771 1.7969 0.43942.66I 40.47o

Ĝ1(ωu) PID 1 5.1997 11.5929 0.5830 0.2097 0.9036 0.01222.41I 24.77o

Ĝ1(ωu) PID 2 0.1244 2.4665 0.0016 1.7836 1.7843 0.44572.60I 39.85o

Ĝ2(ωu) PID 1 4.9476 10.4319 0.5866 0.2372 1.0516 0.01342.50I 16.40o

Ĝ2(ωu) PID 2 0.1033 2.4329 0.0011 1.8223 1.6191 0.51272.84I 42.36o
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Fig. 16. Step response of Process II with PID 2 obtained with the real
G(ωu) and Ĝ1(ωu).

case, this chosen location is related to the stability margins
of the closed-loop system, provided that some assumptions
are satisfied by the frequency response of the process. The
same assumptions, when made for the characteristic loci of
a MIMO process, will imply the same properties of stability
margins. The method proposed inherits the virtues that has
made the SISO ultimate point method very successful, but
also its shortcomings. Although we have applied this method
successfully to a number of relevant examples, it is not
clear at this point for which classes of MIMO systems these
assumptions are satisfied and how generic these properties are.
This is an important area of future research.

On the other hand, previously reported tuning methods for
MIMO systems based on the MIMO ultimate quantities are
strongly dependent of the particular ultimate point identified.
These designs can fail if a “bad” ultimate point is identified,
and there are no guidelines to prevent this situation. Our
method does not suffer from this drawback, as the use of
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Fig. 17. Step response of Process II with PID 2 obtained with the real
G(ωu) and Ĝ2(ωu).

different ultimate points for the design lead to quite similar
performance, as can be seen by the stability margins presented
in Tables V and VIII.
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