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Tuning of multivariable decentralized controllers
through the Ultimate Point Method

Luciola Campestrini, Luiz Carlos Stevanatto Filho and Aledre Sanfelice Bazanella

Abstract—A successful method for tuning single-loop PID the controller tuning [7], [8], but these usually apply t@ss-
cont_rolle(S_ is t_he Ultimate Point Met_hod. This method is bagd on coupled (that is, not decentralized) controllers. Alsceréh
the identification of the ultimate point of the process’ frequency are tuning methods that yield more efficient controllers;, bu

response followed by its shifting, through appropriate chaces NP
of the controller's parameters, to a specified location of te are much more demanding in terms of the data that must be

complex plane. This paper presents an extension of the Ultiate ~ collected from the process’ operation [9].
Point Method to the tuning of decentralized controllers for More recently, extensions of the Ultimate Point Method for

multivariable processes. decentralized control of multivariable processes have ipee-
Index Terms—Ultimate point method, PID control, multivari- ~ Posed, [10], [11], [12]. In these papers, the multivariatdeure
able decentralized control, relay feedback experiment. of the problem is explicitly acknowledged: the MIMO ultingat

guantities are obtained by means of multivariable expertme
Yet, this information is used for tuning the controllersinihe
|. INTRODUCTION SISO formulae, a procedure that does not seem substantiated

t()ey formal multivariable analysis. Moreover, MIMO processe

Despite several decades of industrial PID control praptichave infinitely many ultimate points, and the resulting etbs
a large proportion of the control loops still presents poQL '

performance [1]. For many control loops, a good tunin oop performance is strongly related to the particulamustie

method is one that would require little information abous thSomt used. Hence, a better understanding of the MIMO cntro

rocess dynamics, so that this information can be obtaiged foblem and how to use the ultimate quantities to design
P Y ' ¥ ﬁIMO controllers is in order [13], [14].

carrying out an experiment of limited complexity, followe In this paper we provide a consistent criterion for deter
by the application of simple tuning rules. One of the most. . : : i
y PP P 9 mining the settings of decentralized PID controllers based

successful methods is the one based on the knowledge of ﬁﬁ‘é? ultimate quantities identified. The tuning is made based

Itim int of the pr fr ncy r nse, thah L .2 .
ultimate point of the process’ frequency response, thahis, on a multivariable frequency response criterion: shiftthg

point at which its phase reachesl80°. The characteristics ~ . . . L
: . [timate point to an assigned location in the complex plane.
of the frequency response at this point are usually called ffl

ultimate quantities of the process: the ultimate period acgiobgoég?é.lr']kezm :ge'dseli?hgﬁﬁé ??eequear:i Sib"g‘ n;a(r)gfy?he
gain. In SISO (single-input, single-output) control, wietiown Ined, provi guency respons

formulae, such as Ziegler-Nichols and Tyreus-Luyben, u%gﬁgzsozg:ifelzsw?gﬁg Fr:gt?ggesr.e;r:risclli(t);:ds-(la%omﬁf rf
these ultimate values in order to tune Pl and PID controllers P ot

[1], [2], [3]. Different names have been given to this memoéht\aNpamcul_Zr ull\';:mﬂa(t)e point used for th(—‘;-jdes%n.d by at ¢
in this paper we refer to it as tHdltimate Point Method € consider square processes described by a transter
C o . matrix
In multivariable (MIMO - multiple-input, multiple-outpiit Y(s) = 1
processes, it is common practice to use the SISO procedure (5) = G(s)U(s) @)

and tuning formulae, followed by a “detuning”, which consis whereY (s) and U(s) are vectors withn components, rep-

in reducing the controller gains by some ad hoc factor [4]sThiesenting the Laplace transforms of the process output and
gain reduction tends to enhance the SISO stability margifgpyt respectively, andz(s) is the process’ transfer matrix.
so that the coupling with other loops will - hopefully - notrpe processes are assumed to be BIBO-stable.

destabilize the loop. Better tuning can be obtained by usingwe aim at designing decentralized controllers

sequential controller tuning [2], [5], but this procedureaym
require a large number of experiments. Other techniques hav U(s) = C(s)E(s) @

been applied as well, mostly based on the SISO method and pi(s) 0 0 ... 0 e(s)
experiments [6], [4]. Other methods deal with the identtfia | 0 p(s) 00 c2(s)
of more than one point of the frequency response followed by : : . :

0 0 0 ... pm(s) em(8)
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Tu TABLE |
o @ ZIEGLER-NICHOLS AND TYREUS-LUYBEN FORMULAE.
—® ¢ J_ u G(S) Y
— u - =
_ Ziegler-Nichols kp T; Ta
Pl 0.4K,  0.8T, 0
PID 0.6 K4 0.5T,  0.125Ty,
Tyreus-Luyben kp T; Ty
_ . PI K./32 22T, 0
Fig. 1. Relay feedback experiment. PID Ky /22 22T, T,/6.3
TABLE Il

controllers, the method can be applied to set the parameteglFFERENT POINTS TO WHICH THE ULTIMATE POINT IS MOVED USING
of any fixed structure controller ZIEGLER-NICHOLS AND TYREUS-LUYBEN FORMULAE
The outline of the paper is as follows. Section Il presents

the Ultimate Point Method for SISO systems and Section Il Ziegler-Nichols PF;'E) :ggfgggz
presents how the ultimate quantities are defined in MIMO Tyreus-Luyben || PI || —0.31 t 0.023;
processes. The Multivariable Ultimate Point Method is pre- PID || —0.45—-0.42

sented in Section IV. As the method needs the knowledge of
the process’ frequency response at a given frequency,dBecti

V discusses the practical determination of this quantitye T jes have been proposed over the years, aiming at different
method is illustrated by two examples: in Section VI sOMgeformance criteria. We will explore two sets of formulae i
results of its application to a benchmark - the Wood and Berfis paper: the originally proposed Ziegler-Nichols foleei
distillation column - are given and an additional, illustra 31 \hich typically provide fast but oscillatory behavjand
example, is dlscussgd in Section VII. Finally, Section Viljhe more conservative Tyreus-Luyben formulae [15]. These
presents the conclusions. formulae are given in Table | where the transfer function of
the PID controller is given by
Il. ULTIMATE POINT METHOD 1
The Ultimate Point Method for tuning SISO PID controllers Cls) = kp(1 +

is a well-known method based on the knowledge of the h ller dis| ‘; " L
ultimate point of the process’ frequency response, which is The PID controller dislocates the ultimate point into a kab

the point at which the process’ Nyquist diagram intersect§9ion. which is away from the point1+0; and closer to the
the negative real axis of the complex plane [1]. Associatéjidin of the complex plane. Each set of formulae corresgond
with this point are theultimate quantitiesthe ultimate gain © Moving the ultimate point to a given location in the
(K.) and ultimate periodT,) of the process. If the processcomplex plane. A PI controller with Ziegler-Nichols tuning
is put under purely proportional control the ultimate gasn ii°" €xample, has:, = 0.4K, andw,T; = (27/T,)0.8T,, =
the gain for which the loop is at its stability boundary. Tha-02. Then, the PI controller transfer function, at the ultimate

ultimate frequency,,) is the frequency at which the crossing"€duency is

+ Tds) (6)

of the negative real axis happens, and the ultimate period J
o . » W) = kp(1 = 0.4K,(1 — ——
is given byT, = 27/w,. The ultimate quantities are more Clwn) = kp(1 + quTi) 0 ( 5.02)
conveniently obtained by the relay feedback experiment [1] = K,(0.4 —0.087)

This experiment consists of a closed-loop bang-bang chntro ) )
as shown in Fig. 1. The control functiofi-) is described as Which results in the loop transfer function

L(jwy) = C(gwy)G(gwy,) = —0.4 + 0.08;.

That is, the ultimate point has been moved-0.4 + 0.08;.

where the bias therm should be choserias = r/G(0) and  Taple 11 shows the points to which different formulae move a
the relay amplitude is given by = (v —@)/2 [1]. Then, if process ultimate point.
the ultimate point does exist, a symmetric oscillation voitl
observed, and this oscillation presents the propertiesibel

Fact 1: [1] Let w,s. be the frequency of the oscillation ) - o _
observed in the relay experiment andbe its amplitude at ~From the Nyquist stability criterion it follows that if the
the relay input. Since the ultimate frequency is such th@hole frequency response is kept away from then the

u=n(e) = —d sign(e) + bias 3)

Stability margins

/G(Jwy) = —, wese gives an estimate for the ummate.closed.—loop system will bel stable_and present adequatdfstab
frequency, so that both ultimate quantities can be obtain¥ (9&in and phase) margins. This means that if the ultimate
by means of the relay experiment. Then point is away from—1 and closer to the origin, nearby points
of the frequency response will also be away and, provided
Wy = Wose (4)  that the frequency response is “sufficiently smooth”, adégu
K, = 4d (5) stability margins are obtained. Different smoothness ragsu
ma tions on the frequency response have been made in order to

Once the ultimate quantities are determined, the PID associate stability margins to the Ultimate Point Methopd [1
tuned according to given formulae. Different sets of tunind6], [2].
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Fig. 2. Bode diagram of a PID controller for a system with, = 2 and _180°
Wy = 21—75 rad/s.

Fig. 3. Stability boundaries for the process’ frequencypoese

If, for instance, the Ziegler-Nichols tuning is used in a PID

controller, then
are not too far apart from each other. On the other hand,

C(s) = 0.6K,(1+ 0'25778) several classes of processes are excluded, such as systems
ST W Wu with dominant time-delay and oscillatory systems with naitu
~ 0.157K, (s + %Wu>2 @ oscillation frequency close to the ultimate frequency. thesse
N Wy s systems stability can not be guaranteed and for many among

That is, the controller presents a double zero at the friflem the closed-loop system will indeed be unstable, if a

quency—2w,, at which frequency its magnitude is minimafi€gler-Nichols tuning is applied.
and equal to] C(y2w,) |= 0.6K,. Hence the frequency Different sufficient conditions, with different degrees of

response of the controller has the form depicted in Figure §0nservatism, can be obtained for the Ziegler-Nicholsrigni

Stability in closed-loop is obtained if the loop transfefS Well as for other tuning rules [1], [16]. The same consid-
function C(jw)G(w) satisfies erations will apply regarding the closed-loop stability emh

applying the Multivariable Ultimate Point Method.

[Cw)Gw)] < 1 (8)
£C(gwo)G(gwo)| > —180° 9) [1l. ULTIMATE QUANTITIES IN MIMO PROCESSES
wherew; andw, are defined agC'(jw1)G(jw1)| = —m and In multivariable processes like (1) the ultimate quarditie
|C(3wo)G(3wo)| = 1. With the Ziegler-Nichols tuning we have can be defined similarly to the SISO case [14].
by definition C(jw,)G(jw,) = —0.6 — 0.287 = 0.66 £ — Definition 1: Let a BIBO-stable square process within-
25.02°. If the process’ module drops faster than the growth @iuts be controlled by purely proportional controlle= — Ky,
the controller's module for all frequencies abavg and its with gain K = diag{k1 k2 ... km}, ki € [0,00). Since the

phase drops faster than the growth of the controller's phasmcess is BIBO-stable, the feedback system is BIBO-stable
for all frequencies below,,, then it is clear that conditions for sufficiently small K. Assume that there exists a constant
(8) and (9) will be satisfied. We have thus established teatrix K, such that the closed-loop system is BIBO-stable
following fact. VK = aK,, 0 < a < 1 and unstable foly = K,(1 + ¢),
Fact 2: Let G(s) be the transfer function of a BIBO-stablewith ¢ an arbitrarily small positive scalar; this valu€, is
SISO process and let this process be controlled by a Pt@lled anultimate gainof the process. On the other hand, for
controller (6) with the Ziegler-Nichols tuning as given iablle K = K, the closed-loop system is on the verge of stability and
I. If the Bode plot of the process’ frequency response liggeence a sustained oscillation will be observed; the freguen
completely outside the shaded area in Figure 3 then thedtlosef this oscillation is called amltimate frequency,,. O
loop system is BIBO-stable. The stability of MIMO square systems can be analysed
The constraints on the frequency response of the proc#fsough the Nyquist criterion, as in the SISO case. Denote
in the fact above have clear physical interpretation. Ao  A;(s), ¢ = 1,2,...m the eigenvalues ofi(s)K. The graphs
these conditions can usually not be directly checked fovargi of \;(s) ass goes round the Nyquist contour are called the
process (checking them would require a rough model of tisbaracteristic loci. With these definition, the Nyquistdhem
process) they give a guideline to the class of processesfao MIMO systems can be stated as follows.
which Ziegler-Nichols tuning can be successfully applieo Theorem 1 (Generalized Nyquist theorerf§} If G(s) has
instance, a delay-free stable transfer function with namzerP, unstable (Smith-McMillan) poles, then the closed-loop
will always satisfy these constraints provided that itsegol system with return ratio-G(s) K is stable if and only if the
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Fig. 5. Decentralized relay feedback experiment.

tuning is expected to be to the corresponding “correct” SISO
O eE L i 5 35 5 35 4 tuning for that loop [10].
gain k1 Once the ultimate quantities are identified, a gain suffi-
ciently smaller than the ultimate one should guaranteelgyab
and enough stability margins. However, this is not necédgsar
true in the MIMO case. If the ultimate curve in the parameter
space is convex, then adequate stability margins are giegn
- . . ._by taking a gaink’ = a K, for sufficiently smalla.. However,
characte_nsnc loci of+(s) K, tqken togethgr, encircle the pomt]-t is not possible to guarantee that the ultimate surface is
__1 I times counterclockwise, assuming that there are |E%nvex, or even smooth. As a matter of fact, there are cases in
hidden unstable modes. ) - which the ultimate surface is not convex, like in the bencikma
So, for a BIBO-stablé:(s), the closed-loop system is stabley,died in Section V.
if and only if none of the characteristic loci 6f(s) K encircles The ultimate gains can be more conveniently obtained
the point—1. As the gain matrixs is varied, the stability limit .\, 5 Decentralized Relay Feedback (DRF) experiment [10],
is reached when at least one of the characteristic loci 8qUi;strated in Fig. 5, and different ultimate points areritied
—1 for some frequency. The gain for which this happens is §fjth different relay amplitudes [13], [14]. In DRF only one
ultimate gain. experiment is performed, with all control loops in relay
The ultimate quantities are usually unique in the SIS@edback, that isi; = n(e;) Vi. Since all the input-output

case; even when they are not unique, they are countalyigirs are connected, the behavior of the whole multivagiabl
The situation is quite different in the MIMO case, since thgystem is observed in this single experiment.

gain matrix K can be increased from 0 in infinite different

directions in the parameter space. It can be eXpeCted tha’:\ﬁ. DESIGN BASED ON THEMIMO ULTIMATE QUANTITIES
different K, andw,, will be found for each different direction,

as depicted in Fig. 4. The set of all the ultimate gains is &eur
in the parameter space. In the more general{ 2) case these

Fig. 4. The ultimate gains in the TITO (two-input, two-outpaase form a
curve in the parameter space.

The Multivariable Ultimate Point Method is an extension
of the Ultimate Point Method to multivariable systems. The
gains will form a surface of dimension — 1; this surface will main idea .iS to dislocate the ultimate p.oint. of the process to
be called theulimate surface[14] ' gnother pointin the c_:omplex plane, moving itto a p_ogtmtth

' is away from the point-1 + 0y and closer to the origin [13].

If decentralized PID tuning is determined based on they ;s first present the TITO (two-input-two-output) case.
ultimate quantities using Ziegler-Nichols like formulass in

[10], [11], [12], [17], then two things must be realized. $kjr The TITO
all PID’s will be tuned based on the same ultimate frequen@: e_ case
Second, the tuning will be dependent on which pair of the Consider a2 x 2 or TITO system. Then the loop transfer

ultimate quantities has been identified. function for K = K, is given by:
~ For simplicity, letm = 2. Consider that the gai is G U)K, = g11(w)  g12(w) | | ka0 (10)
increased in the directiok = diag{k; 0}, that is, the FOT= ] ga(w) g2 (w) 0 kuo

second loop is kept open, and the proportional gain in loo )
P Pt op prop d -IF_Jet)\l(gw) andX,(yw) be the eigenvalues of the loop transfer

1is in_creast_ad. The uItimate_ gain that will be obt_ained i3 thlnatrix G(yw)K,. Then, by the very definition of critical gain
experiment is the SISO ultimate gain,, of the first loop. f and critical frequency,, at least one of these eigenvalues
Then, if the PID is tuned according to these ultimate quiestit is equal to—1 for w = w,, that is, either\; (jw,) = —1 or

this tuning is the “correct” one for the first SISO loop. On the(jw,) = —1 or both. Replacing the proportional controller
other hand, if the gailk is increased a& = diag{0 k- }, then with a decentralized dynamic controller in (10), we have
the “correct” SISO tuning for the second loop is obtained If _ [ () gi2(w) p1(w) 0

different direction in the parameter space is picked tosase ~ &(w)C() 921 (w) g2 (jw) 0 pa(pw)

the gaink, then it is expected to find a tuning that will not be 11)
optimal for any of the two loops, but will represent some sort

of “average” of the two. The closer this direction is to eithe The ultimate point is to be dislocated to a previously
one of the two SISO directions defined above, the closer thirosen position in the complex plane, that is, at the ulémat
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frequencyw,, the eigenvalues of the loop matrix in (11) musalso in SISO design, causing the two zeros of the controller
be located at these previously chosen locations. From {i4.), to be equal, which guarantees smoothness of the contsoller’
characteristic loci at the ultimate frequency are given by frequency response. In this case, (23) becomes

det(A(ywu)! — G(jwu)C(Jwu)) = 0. (12) Epy (Tiwy)? — 4lm{p1, }Tjw,, — 4kp1 = 0 (24)

The ultimate point design consists in finding controller's Thys, from (24) we have two solutions fF; w,,, which are
transfer functiong; (s) and p2(s) such that the eigenvaluesajways real and with opposite signs. We choose the solution
A(jwy) in (12) have the desired values, say and Az;  whereT} w, > 0, and from the relationg;; = k,;/T}; and
this is the core aspect of the MIMO ultimate point method,,, — k,1Ti1/4 we obtain the gains of the controlles .

Let us give a more detailed treatment for a particular wayontrollerp,, is obtained from (16) and then its parameters
of choosing these locations in the complex plane, namejy, andk,, from (24) mutatis mutandisAs for PI controllers,
A1 = A» = A. With this choice, expanding (12), andwe find two different PID controllers that dislocate both
defininggi1, = g11(Jwu), 912, = G12(Jwu), 921, = g21(Jwu),  characteristic loci to the desired point.

922, = g22(Jwu)s p1, = P1(Jwu), P2, = p2(jwy) in order to

simplify the notation, we have
B. The general case

N = (guup1, + 922,02, )0+ (13)  Forthe general MIMO case, whene may be different from
(911,922, — 912, 921,)P1,P2, =0 two, the same reasoning holds and the same procedure can
be applied. Of course, the equations become more complex.
Consider again the case in which all characteristic loci are
dislocated to the same desired palntfor a TITO process, the

If the roots of (13) are given by, then the characteristic
equation is given by — 2A\ + A2, which yields

2A = g11,p1, + g22,P2, (14) controllers are obtained through (14) and (15). For a pmces
A% = (911, 922, — 12,921, )P1. D2 (15) of orderm, the equations used to obtain the controllers are
given by
From (14), we have _
T am—iA' =Y Mi(G(jwa)C(jwn)), (25)
D2, = —— — —/P1,; (16) _ o ) _
922, 922, where M; are the i-th order principal minors of the matrix
o ) G(jwu)C(jw,) and each sum is taken over all principal
and, substituting (16) into (15), we have minors of orderi. We note that in each term there are
911, o 2A A2 alwaysC¢, = #LZ), such minors wher€!, stands for the
1, — b1, + _ =0 (17) combination ofm elements taken at a time.
922, 922, 911,922, — 912,921,

. . . On the other handy,,,_; are the coefficients of the charac-
Since (17) is a second order polynomial, we can get t &

YWristi tions — A)™, which can be obtained using th
different tunings forp, . Note thatp,, is a complex quantity. ristic equation(s )", which can be obtained using the

; . . Newton’s binomial formula, fos = 1...m. So, we have
Then, by solving (17) we have the setting of the tunings for mn

p1, and, substituting into (16), two different tunings fpy, , = — m! . (26)
also complex, are obtained. Therefore, we have two differen T (m— )l
controllers that move the ultimate point to the desired tioca Like in the TITO case, this will result in a system of
For PI controllers, from the solution of (17), we have  equations with the controllers’ values as unknowns.
_ We present the case where = 3 for illustration. The
ot Relp.t, (18) coefficients of the characteristic equation are given by (26

kii = —Im{py, }wu, (19)
andp., gains are given by i =1 ash = CIA = 3A,

kpo = Re{pa,}, (20) i=2—a1A? =C3A% = 3A?, (27)

kiQ = —|m{p2“}wu. (21) 1=3— a()A3 = CgA5 = A5
For PID controllers, we obtaip,, in the same way (from  Equating (27) with (25) results in the following set of
(17)), but in this case equations:

1
P1, = kp1(1 + (Tipwy — » )7)- 3A =g11,p1, + 922,P2, + 933,P3, (28)
11Wy

3A% =(g11,, 922, — G12,, 921, )1, P2, +
and we have (911u922u 912u921u)p1up2u

. R 9 (911,933, — 913,931, )P1,P3,+
v = Re{p1}, ) (22) (922,933, — 923,932, )P2.D3., (29)
Fops (Tarwu = Toiw ) =Im{py, }. (23) A® =[(g11, 922,933, + 921,913, 932, + 931,912,923,
i1lWy
One degree of freedom still exists in the choiceTof and ~ (911,923,952, + 921,912,953, + 981,913,922,
T.. A possible choice is to séfy; = L&, which is usual P1.P2,P3..- (30)
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The controller is obtained by solving (28-30) for the unwhere the indiced and /7 mean first and second DRF tests
KNOWNSp1 ., p2.. andps,. This results in six different solutionsin the plant and the two oscillating frequencie$ and w,’
- in contrast to the two solutions for the TITO case - an@'€ close to each other. If we make the approximatign=
it is not clear how to choose among them. Other desidf @ W€ have four equations and four unknowns, and we can

choices also become significantly more involved for systerfSimateG(jw.) by

of dimension larger than two. The handling of these choices 11 1o } { T } B { yl yl! }

is by no means straightforward, so this is a topic that should Go1 g22 ud ! - v yal

be further developed to make our method more practical for U = v

systems with more than two inputs, although it is in prineipl G = vyu, (34)

applicable to systems of any dimension.
Having these informations, the Multivariable Ultimate Roi
V. PRACTICAL DETERMINATION OF G (jw,,) Method can be used in order to obtain the controller. The
In the SISO ultimate point method, the design of theifference between the two frequencies will introduce aorer

controller requires the knowledge of the process’ frequent the estimation of7(jw,) but, as the oscillation frequencies
response at the ultimate point, an information that is mtesi &re quite similar, we can expect this error to be small [16p T
by the relay feedback experiment. Accordingly, the MIMC$ase studies presen?ed in the sequel s_how that this is indeed
ultimate point method, as presented in the previous sectidh® case and that this procedure can, in many cases, be used
requires knowledge of the transfer matrix at the ultimaf@ obtain the matrixG(jw.).
frequency. However, the decentralized relay feedback (DRF
does not provide the whole transfer matrix, but only the VI. CASE STUDY - DISTILLATION COLUMN
ultimate quantities of the process, which for MIMO processe Aiming at demonstrating the use of the proposed design
is not equivalent. There are different ways of determiningethod, this section presents some results obtained for the
G(jw,) and the more accurate ones will be more demandimmpntrol of the Wood and Berry distillation column, whose
The aim of this section is to present a convenient proceduransfer matrix is presented in (35). This process has been
to apply in operating systems, although the development widely used as a benchmark [11], [18].
optimized procedures remains an open issue. 12.8¢=%  —18.9¢~3°
Consider a TITO process. When the DRF is appliedt), G(s) = [2%15#3 129111351
us(t), y1(t) andys(t) are periodic signals. Let;, us, y; and 10.9541 14.4s11
Y2 be the complex coefficients of the first harmonics of thes§nce the process & x 2, we have infinite different combi-
signals. Then we have: nations ofk,; and k,, that lead the process to the stability
{y1 = 911 (wa)u1 + g12(Jwa ) us limit, each one corresponding to a different ultimate point
(31) In order to illustrate the results, we have tested different
v2 = g1 (gwu)ur + g2 (gwu)us. ultimate points. As the Multivariable Ultimate Point Metho
As we have two equations and four unknowns, it is noteeds the knowledge @& (jw, ), we have to find two different
possible to determin€'(sw.,,). So, an additional experiment isbut very close ultimate points and then estimatgw,) by
necessary. From the DRF test, we know the ultimate frequen(@¢). We have estimate@(ywu) for two different frequencies,
w, of the system. So, if we apply an input(t) = sin(w,t) which are presented in Table Ill, where
andus(t) = 0 to the system, we have
1GOw) = GOwih]l,

(35)

{yl = on (o @) A6 =6, (%)
Y2 = go1(gwu)ur, is the variation ofG due to the difference of the oscillation
and it is easy to determing; (Jw, ) andgs; (Jw., ). Substituting frequencies obtained in each DRF test and

the;e_ quantities_in (31), we determiGgjw,,). However, this HG( W) — GOl

additional experiment is an open-loop test, which is uguall o JWu JWu 2 (37)

inconvenient in real applications. In many situations, st i G Gwill,

difficult to apply this signal to the input of the process . A ,
depending on the software and hardware structure in tifei€ estimation error af7 (jyw,) related toG(jw. ), w,, being

control system implementation. obtained from the first DRF test performed.

A more convenient solution is to apply a second DRF test _ _ _ _
on the system, changing one relay’s amplitude in such a wAy PID controller obtained using the Ziegler-Nichols foriael

that the oscillation frequency does not change signifigantl This section presents some results obtained for the Wood

Thus, we have and Berry distillation column using the ultimate quantgtie
I _ N, I N, T of the process and Ziegler-Nichols formulae. This tuning
= b + b ) )
y} B gn(]w}‘)u} glg(]w}‘)ui procedure is adopted in several papers [18], [10], [11]. We
Y2 = g21(Jwy)uy + g22(Jwy, Juy (33) show the results for referenceg) = [1 0]" andr(t) = [0 1]'.

yi’ = gu(wiDul’ + gia(wiug’ Fig. 6 presents the behavior of the system with a PID

yil = go1 (I ull + goo (gullud!. controller tuned through the Ziegler-Nichols formulae and
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TABLE Il
G(]wu) FOR TWO DIFFERENT FREQUENCIES OWWOOD AND BERRY COLUMN.

experiment | |ua|/|u1| W, G (jwu) AG e (%)
1 1.9371 0.4946 G = —0.5554 — 1.42957 1.7820 + 0.3223) 29 0.6
2 0.9489 0.4931 1= 101784+ 1.18987  2.6252 4 0.5941) ’ '
3 3.5303 0.5228 o — —0.5843 — 1.3663y 1.7265 + 0.2054) 70 6.6
4 0.6659 0.5106 271 0.2731 + 1.14387  2.5441 4 0.4183) ’ '
15r 28 — y1-PID1
--y il --y2-PD1 ||
— y1-PID2
y2-PID 2

ref [1 0]

10 20 30 40 50 60 70 50 50 70

15

05F ! 4

ref [0 1]

o
ref[0 1]

05 L L L L L L
0 10 20 30 40 50 60 70

t(s)

40 50 60 70
t(s)

Fig. 6. Step response of the system with PID tuned using @iegichols Fig- 8. Step responses of the system with PID 1 and PID 2, méwlsbased
formulae and ultimate poink,, = [0.42 — 0.30] andw, = 0.4882 rad/s. ~ ON Tyreus-Luyben point.

2t B. PID controller obtained with Multivariable Ultimate Pai
Method

Next, we have found a PID controller that moves the
characteristic loci to the point-0.45 — 0.423, which is the

~y
b

“ ARD

opt=-=-! oo NSNS ; ‘."‘\"'\"'\'rl\".‘L "‘\_ ',.\I ,:‘u ,"‘l':lll': “',' '\I' '.‘T' equi i ; "
e ‘ ‘ ‘ ‘ AR quivalent of Tyreus-Luyben point for the SISO Ultimate
o 1 2 % © % % * Point Method. As (23) yields two solutions, Fig. 9 presents
. - | | | | | the charac;eristic loci of the system with each one of the
b AT AR AR AN AR AN controllers inserted.
osf U b The outermost characteristic loci of both systems - system
e 1 controlled by PID 1 and system controlled by PID 2 - cross

ref [0 1]

ol | the circle of unitary radius approximately at the same point
oMAWVVWVV\AN\AAMANW At every point of this circle, the magnitude of the system’s
-0z ‘ ‘ ‘ ‘ ‘ ‘ response is equal to one and the phase margin is given by
© the angle between the crossing of the outermost chardateris
locus with the circle of unitary radius and the negative real
Fig. 7. Step response of the system with PID tuned using &iegichols  axis. This means that the phase margin of both systems is
formulae and ultimate poinkc, = [1.27 — 0.25] andw, = 0.5129 rad/s.  {ha same. Table IV presents the controllers’ gains and the
stability margins and Fig. 8 presents both systems resgonse
for different references. As can be seen in Table IV, the @has
the ultimate quantitieskK, = [0.42 —0.30] and w, = margins are almost the same for the two controllers - close to
0.4882 rad/s. Note that the transient performance obtaine#B® - but PID 2 presents a worse gain margin. The effect of this
is very good. However, for a PID controller tuned based dact can be seen in the step responses of the systems presente
another point of the ultimate surfack,, = [1.27 — 0.25] and in Fig. 8, in whichy,(t) of the system controlled by PID 2
w, = 0.5129 rad/s, the system became unstable, as shown presents a significant overshoot for reference [0 1]'. Fig. 8
Fig. 7. These results show that the SISO tuning is too riskytesents the step responses of the system with the condrolle
due to the non-existence of a full multivariable analysis tebtained withG' (jw.,).
justify the tuning procedure. The performance of the system can be improved through
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T T T T T

1 i = charac. locus 1 - PID 1 ||
-7 T ~._|= = charac. locus 2 -PID 1
7 —— charac. locus 1 - PID 2
- ) L - charac. locus 2 - PID 2
e e e | @0 = 0,45 - 0.42) (T-L)
y L .7 = - circle of unitary radius

-1 -0.5 0 0.5 1
Fig. 9. Characteristic loci of the distillation column wibloth PID controllers, designed with the proposed method.

TABLE IV
PID CONTROLLERS GAINS OF THE SYSTEMS PRESENTED IIG. 8.

Controller | k1 ki ka1 kp2 kio kao Gum Sum
PID 1 0.5823 0.2247 0.3773 -0.0860 -0.0135 -0.1374 2.5733.2%
PID 2 0.1435 0.0623 0.0826 -0.3123 -0.0434 -0.5617 1.2332.59

TABLE V
PID CONTROLLERS GAINS THAT DISLOCATE THE ULTIMATE POINT TO —0.2 — 0.3.

Controller kpl ki1 ka1 k‘p2 kio kao Gum Dr
PID 1 0.3663 0.1102 0.3044 -0.0432 -0.0051 -0.0912 3.876042.50°
PID 2 0.0929 0.0311 0.0693 -0.1510 -0.0155 -0.3671 1.897545.78
PID 1 0.3803 0.1149 0.3147 -0.0416 -0.0045 -0.0952 3.245743.0%
PID 2 0.0968 0.0315 0.0742 -0.1493 -0.0147 -0.3796 1.832547.09

NN P RPQ

the choice of another point in the complex plane, motiacrease in the stability margins; step responses justiatai
conservative than Ziegler-Nichols and Tyreus-Luyben ondhat.

Several controllers were designed for different pointsha t

complex plane 4’s) and Figs. 11 and 12 present the steg, pj controller obtained with Multivariable Ultimate Pdin
responses of the system with PID 1 and 2, respectively, thakihod for one characteristic locus

dislocate the ultimate point te-0.2 — 0.3;. Table V presents
the controllers’ gains and stability margins. In this case,
present the controllers obtained with (jw,) and Ga(Jw.),
which correspond to two different ultimate points. Diffete
controllers were designed, with different ultimate pojrgad

Let us present a simpler alternative to the previous chdice o
dislocation for the ultimate point. The stability limit isually
reached when only one characteristic locus crosses the poin
—1+ 0. If we assume that the other characteristic loci are far
? L enough from—1, then the insertion of a controller in the loop,
all these controllers yield similar results. ; .

R however changing the size and shape of them, should not make
_ The system performances corresponding&p(jw.) and them involve—1. In this case, we may concern ourselves only
G2(yw.) are not visually distinguishable, reinforcing the facith the “critical” characteristic locus, that is, the orfeat
that the choice of the “right” ultimate point loses impoman crosses-1, and move only this one to a specified location in
when the MIMO ultimate point method is applied. This igpe complex plane [13].
also verified by the controllers’ gains obtained for différe  \we apply this idea to the case study to find a controller that
ultimate points, which are very similar. moves the ultimate point of the characteristic locus thasses

Also, as the point in the complex plane chosen is mothe point—1+0j to —0.40+ 0.08, which is the equivalent of
conservative than the one used before, there is a significZiggler-Nichols point for SISO Ultimate Point Method using
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T
— — charact. locus 1 — Ku controller
—— charact. locus 2 - Ku controller
1r ~= % -1 +0j (stability limit)

- = = charact. locus 1 - PI controller
- = charact. locus 2 — PI controller
- 0.4 +0.08j (Z-N)
circle of unitary radius

- (]

e -

Fig. 10.
locus.

ref [1 0]

40 50 60 70 80 %0 100 40 50 60 70 80 % 100
1 g T e ™ T 12
pemmm T 1+ T = -
08l LT | [T 1
”f ) 0.8 /
=06} e B = o6 ]
g 0.6 poss g osf |
T 04l ',’ | B 04r J
(4 0.2 4
02 ,' b 0
I’
0 I n L L L L -0.2 L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 o 10 20 30 40 50 60 70 80 EY 100
t(s) t(s)
Fig. 11. Step response of the system with PID 1 controllet dslocates Fig- 12.  Step response of the system with PID 2 controllet dslocates

the ultimate point to—0.2 — 0.3;.

presented in Fig. 10:

PI1 control. Fig. 10 presents the characteristic loci of tystem
with the ultimate gain and with the PI controller inserted).F
13 presents the step response of the system with the cantroll
obtained using@l(gwu); Table VI presents the controller’'s
gains.

The step responses shown in the results present good

the ultimate point to—0.2 — 0.3;.

Py = 38.53° Gy = 2.081.

performance: the overshoot is less than 10% and the settlingPI CONTROLLER' S GAINS OF THE SYSTEM PRESENTED IffIG. 13.

time is aroundd0s. As can be seen in Fig. 10, the outermost
characteristic locus from the system with PI crosses thaecir
of unitary radius far from the point1 + 30, and the stability
margins can be easily calculated from the Nyquist diagram

TABLE VI
kp1 ki1 kp2 kio
0.1840 0.0151 -0.1214 -0.010D
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| = significantly. Table VIII presents the controller gainstaibed
N = with G(jwy), G1(jw,) and Go(jw.), as well as the stability
= | margins obtained with each controller. It can be seen that
2l . | PID 2 seems to be the best controller whatever estimation
wl AN | of G(yw.,) is used for this process. Thus, if we choose PID 2,
. /. e emmman . ‘ there is no significant influence of the estimation error ia th
° 1 % % * % % 0 performance of the system. This can also be seen in Figs. 16
and 17, which present the system response when the controlle
i e ‘ ‘ o ] PID 2 is applied and the estimationi; (jw, ) and G2 (jw.),
ol ST | respectively.
éo.sf ," B
3] h 02
0.4 N B
0.2+ 'l i ! gain margin
0O 1‘0 2‘0 3‘0 4‘0 50 60 70 7

t(s)

Fig. 13. Step response of the system with PI controller abththrough the _
Multivariable Ultimate Point Method based on Ziegler-Nith point.

VII. CASE STUDY - PROCESS Il :'
In this section, we present some results obtained for anott I N '
process, whose matrix transfer function is presented in. (37°°] BN ) H |
This process was also used in [17], [18], and is considered T W vl =
have strong coupling. Ry T \ et loaue2 - for b
Y o Charact locue 2 - {am PID 1)
0.5 -1 S\ O -0.45-0.42j (T-L)
G(s) = (O.ls+1)21(0.25+1)2 (0.15+1)2§2.25+1)2 (38) . ‘ ‘ ‘ \‘P =1~ circle of unitary radius
(0.15+1)(0.25+1)2 (0.15+1)(0.25+1)2(0.55+1) -1 0.8 0.6 04 0.2 0 02

First of all, we have estimated(jw,,) for different ultimate Fig. 14. Characteristic loci of Process Il with PID 1, wheringsthe real
frequencies through DRF tests. Two of them are presentedGfiw«) and the estimations (jwu) and G2 (jwu)-
Table VII.

The controller design for Wood and Berry distillation col-

0.2

umn, in the previous section, presented better results tvéh I
application of the method that tunes a PID which dislocate i gafp margn___
both characteristic loci to a desired point. This is mainleed o ".4’ . |
to the fact that, regardless of the ultimate point used,lami | /;J’
performances are obtained, i.e., similar stability masgithe B /I' ;
choice of the desired point in the complex plane is whi®?[" ,’.' 2 7
determines how large these margins are. B al

Another important point to study is the influence of the,,| . D il i
error in the estimation of/(jw,,). Fig. 14 presents the Nyquist ' SR
diagrams of the systems controlled by PID 1, obtained wi phase margiy . ¥
G(jw,) directly from the transfer function (38) and with=®f > 3 it 1
Gi(jwy) and Go(jw,), which presents a larger estimatior . PR — G b - 6707
error. The design aims to dislocate the ultimate point 1| T S R et |
—0.45—0.423. Although the tuning that usés, (yw, ) does not TS| o Chaact a1 - (G2 PID )
reach exaptly Fhe desired point, the resultlng stabl_lltygrra; R B e
are indistinguishable from the ones obtained with the re -/ o8 o5 Y

G(jw,). The tuning obtained fof, (jw,) places the ultimate
point even farther from the desired location. In this cake, tFig. 15. Characteristic loci of Process Il with PID 2, wheringsthe real
gain margin has been unchanged, but the phase margin f{gg') ad the estimations:s (jwu) and Gz (juw).
been decreased significantly for PID 1.
Besides, Fig. 15 presents the Nyquist diagrams for the
same design, but in this case we compare the design results VIII. CONCLUSIONS
when PID 2 is applied. It can be seen that the estimationAn extension of the Ultimate Point Method for multivariable
error has a large influence in the tuning method, which &ystems has been proposed, which consists in dislocating th
unable to reach the desired point in the complex plane but, bifimate point to a given location on the complex plane. &iff
the other hand, the stability margins have not been changat locations on the complex plane can be chosen. In the SISO
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. TABLE VII
G(jwy) FOR TWO DIFFERENT FREQUENCIES O38).

experiment | uz|/|u1] Wy G(wa) AG e (%)
1 4.0947 4.4366 O = —0.1520 — 0.17437  0.1502 + 0.4890y 0.7 0.7
2 0.7544 4.4211 1= 1-0.1531 — 0.484573 —0.5012 — 0.0631y ' '
i 40761255]?5 igg?é o — —0.1736 — 0.17297  0.1758 + 0.4491y 8.4 8.3
' ’ 27 1-0.1460 — 0.4981y —0.4537 — 0.0142

TABLE VI
PID CONTROLLERS GAINS FORPROCESS IITHAT DISLOCATES THE ULTIMATE POINT TO—0.45 — 0.42.

G Controller kp1 K1 ka1 kp2 ki2 kaz | Gm DM
G(ywu) PID 1 5.0803 11.4042 0.5658 0.2066 0.8948 0.0112.44] 24.16
G(gwu) PID 2 0.1156 24170 0.0014 1.7771 1.7969 0.4392.66f 40.47F

G1(wu) PID 1 51997 11.5929 0.5830 0.2097 0.9036 0.0122.411 24.77
G1(Jwu) PID 2 0.1244 24665 0.0016 1.7836 1.7843 0.4452.60 39.8%
G2 (gwu) PID 1 49476 10.4319 0.5866 0.2372 1.0516 0.0132.50I 16.40
G2 (Jwu) PID 2 0.1033 24329 0.0011 1.8223 1.6191 0.5122.84] 42.3@

ref [L O]

-1 . I I . .
3
ts)

3
ts)

Fig. 16. Step response of Process Il with PID 2 obtained whith real Fig. 17.  Step response of Process Il with PID 2 obtained with real
G(ywu) and G1 (Jwu ). G(ywu) and G2 (Jwu ).

case, this chosen location is related to the stability nmargidifferent ultimate points for the design lead to quite samil
of the closed-loop system, provided that some assumptidiformance, as can be seen by the stability margins pesent
are satisfied by the frequency response of the process. Thdables V and VIIl.

same assumptions, when made for the characteristic loci of
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