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Abstract— From a practical point of view, adjusting the
controller without having to identify the process model has
many advantages, for example, when the process is simple
but changes a lot during the operation. In this case, there
are many direct data-driven methods in the literature which
may be employed to adjust a monovariable controller aiming
at reference tracking. However, when the control objective is
disturbance rejection or regulation, the designer is left with too
few choices. The aim of this paper is to provide one new option
and show how it can be applied to those control objectives.

I. INTRODUCTION

The necessity for retuning a controller is present in many
practical situations where the process may deviate from its
nominal behaviour along the time. Thermal processes are
well known instances of such group. At the same time, re-
identifying the process and recalculating the controller for
small frequent deviations is tedious and, perhaps, even a
costly task. On the other hand, data driven direct methods
may be employed to automatically tune the controller’s
parameters direct from the data [1]. Besides, data driven
methods may perform at least as good as model based
methods when the controller available is of full order. But
data driven methods are proven to give better estimates for
the controller’s parameters when it is underparameterized,
i.e. with reduced order [2], [3].

A reasonable number of direct data driven methods are
already proposed in the literature. Examples include: the
Virtual Reference Feedback Tuning (VRFT) [4], the Iterative
Feedback Tuning (IFT) [5], the Optimal Controller Identi-
fication (OCI) [3], and the Noniterative Correlation-based
Tuning (NCbT) [6]. All these methods are very good at
solving the reference tracking problem. On the other hand,
when the designer faces load disturbance rejection problems,
there are very few options left. In fact, the only other method
for this class of problem, that we know of, is the Virtual
Reference Feedback Tuning (VDFT) [7], a variation of the
VRFT method for load disturbance response tuning.

With all that in mind, the main objective of this paper
is provide another data driven direct method capable of
solving the load disturbance problem. The proposed method
may be seen as a modification of the NCbT to deal with
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the load disturbance. This method was first proposed by
[8] for monovariable systems. In that work, the controller
is tuned from open loop experimental data or closed loop
data with a simulated disturbance, and the method was
only validated through simulations. That method was later
extended to multivariable systems by [9], this time allowing
the experiment to excite the reference inputs, but again
validated only through simulations. Now, this paper presents
the monovariable case with excitation through the reference
input and validates the solution with a real thermal process
controlled by a commercially available controller.

The remaining of this paper is organized as follows:
Section II presents some common definitions regarding the
system, controller, control objectives, experiment and noise;
then Section III presents the error variable proposed and
data driven correlation approach and the solution to the
correct controller’s parameters estimation problem; after that,
Section IV presents the filters for data pre-filtering when
the controller is underparameterized or the reference model
cannot be perfectly achieved. Finally, Section V presents
a case study employing the proposed method to tune the
parameters of a commercial controller used to regulate a
thermal process. Then, Section VI draws some conclusions
from the results.

II. PRELIMINARIES

When in open loop, the monovariable process to be
controlled is described by the following classic input-output
relationship:

y(t) = G(q)u(t) + v(t), (1)

where G(q) is the linear time-invariant (LTI) discrete time
process model, a rational function of the backward time shift
operator, q−1; while u(t) is the control input; and y(t) is
the measured output. The latter may be contaminated with
a zero-mean, not necessarily white, additive measurement
noise v(t).

On the other hand, when in closed loop, the control input
is generated by a monovariable LTI parameterized controller
C(q,ρ), and may be affected by an additive load disturbance
d(t), such that

u(t,ρ) = C(q,ρ)[r(t)− y(t,ρ)] + d(t), (2)

where y(t,ρ) is the measured closed loop output. Also, ρ ∈
Rp is the controller’s parameter vector.
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Combining (1) and (2) results in the following closed loop
equations:

y(t,ρ) = T (q,ρ)r(t) + S(q,ρ)v(t) +Q(q,ρ)d(t) (3)
u(t,ρ) = C(q,ρ)S(q,ρ)[r(t)− v(t)] + S(q,ρ)d(t), (4)

where S(q,ρ) = [1+G(q)C(q,ρ)]−1 is the closed loop sen-
sitivity function, T (q,ρ) = 1−S(q,ρ) is the complementary
sensitivity function, and Q(q,ρ) = G(q)S(q,ρ) is the load
disturbance sensitivity function.

This paper presents a data-driven method for adjusting the
controller’s parameters in order to shape the load disturbance
response, such that the following disturbance response cost
is minimized:

JDR(ρ) = ‖[Qd(q)−Q(q,ρ))]d(t)‖22, (5)

where Qd(q), known in the literature as the reference model,
represents the desired closed loop behaviour. The ideal
controller is the one that forces the closed loop behaviour to
match the reference model exactly.

Observe that, for any controller,

Q−1(q) = G−1(q) + C(q), (6)

from the very definition of the load disturbance sensitivity.
Particularly, the ideal controller is given by

C?(q) = Q−1d (q)−G−1(q), (7)

and could be easily calculated, if the process model were
available. The ideal controller may be unstable or even non-
causal; therefore, exact matching is possible only if the
following condition holds.

Condition 1 (matching condition). The ideal controller may
be represented with the controller structure available:

∃ρ? ∈ Rp |C(q,ρ?) = C?(q). (8)

In this case ρ? is called the ideal parameter vector. Con-
versely, this means that the reference model is well chosen
and may be achieved with the ideal parameter vector:

Qd(q) = Q(q,ρ?). (9)

Since this is a data-driven method, instead of using the
process model in (7) to minimize (5), a batch of N input-
output data samples is collected during an experiment, and
those data carry implicit information about the process.
The data collected are employed later in the data-driven
optimization. Should open loop experimentation be possible,
the data collected comprise the following dataset:

ZNu = {u(1), . . . , u(N), y(1), . . . , y(N)}. (10)

However, if only a closed loop experiment is possible, but
a reference change is permitted, the following dataset is
collected:

ZNr = {r(1), . . . , r(N), u(1), . . . , u(N), y(1), . . . , y(N)}.
(11)

Finally, if none of the above is possible, a disturbance in the
process input may be simulated by adding an offset d(t) to
the controller’s output, producing the following dataset:

ZNd = {d(1), . . . , d(N), u(1), . . . , u(N), y(1), . . . , y(N)}.
(12)

Still regarding the experiment, along this paper the fol-
lowing assumption is employed w.r.t. the noise.

Assumption 2 (the noise). The measurement noise affecting
the system’s output is a quasi-stationary process uncorre-
lated with the other input exciting the system during the
experiment. Which means that, during an experiment exciting
some input x(t),

lim
N→∞

1

N

∑N

t=1
Ex(t)v(t− τ) = 0 ∀τ. (13)

This is a common assumption in system identification and
is paramount for the correlation approach. Also, only one of
the inputs is excited during the closed loop experiment.

III. CORRELATION APPROACH

Although the final goal is to minimize the cost (5), that
function depends on the process model, which is supposed to
be unavailable. Therefore, instead of optimizing (5) directly,
the correlation approach seeks for the minimizer of the
correlation between certain error variable and the experiment
input. For this approach to work, the error variable must be:
C1 obtainable without the process model. This stems from

the fact that the process model is unavailable; therefore,
the error variable must depend only on the dataset and
on the other known problem pieces: the reference model
and the controller structure;

C2 a function of the controller’s parameters. Therefore, the
parameters are the optimization variables;

C3 uncorrelated with the experiment input for the ideal
parameters. This ensures that the ideal parameters are
the global minimum of the correlation.

With that in mind the following error variable is proposed:

ε(t,ρ) = Qd(q)u(t)− y(t) + C(q,ρ)Qd(q)y(t) (14)

Clearly, (14) has the characteristics C1 and C2. For the
characteristic C3, first observe the following lemma:

Lemma 3. The error (14) from open loop data is

ε(t,ρ) = S−1(q,ρ)[Qd(q)−Q(q,ρ)]u(t)

− [1− C(q,ρ)Qd(q)]v(t), (15)

calculated replacing (1) in (14) and grouping the terms due
to each external input together.

Proof. The lemma follows from

ε(t, ρ) = [Qd + CGQd −G]u− [1− CQd]v (16)

= [S−1Qd −G]u− [1− CQd]v (17)

= S−1[Qd −Q]u− [1− CQd]v, (18)

where t, q, and ρ are omitted for brevity.

201

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL. Downloaded on March 10,2022 at 12:20:07 UTC from IEEE Xplore.  Restrictions apply. 



Lemma 4. The error (14) from closed loop data obtained
with the initial feedback controller C0(q) is

ε(t,ρ) = Q−1(q,ρ)[Qd(q)−Q(q,ρ)]T0(q)r(t)

+Q−1(q,ρ)[Qd(q)−Q(q,ρ)]Q0(q)d(t)

−Qd(q)[C0(q)− C(q,ρ) +Q−1d (q)]S0(q)v(t),
(19)

calculated replacing (3) and (4) in (14) and performing some
algebraic manipulations. S0(q), T0(q), and Q0(q) are the
sensitivities during the experiment.

Proof. The lemma follows from

ε(t, ρ) = QdC0S0r −QdC0S0v +QdS0d

+ CQdT0r + CQdS0v + CQdQ0d

− T0r − S0v −Q0d (20)

= [QdG
−1 + CQd − 1][T0r +Q0d]

−Qd[C0 − C +Q−1d ]S0v (21)

= Qd[G−1 + C −Q−1d ][T0r +Q0d]

−Qd[C0 − C +Q−1d ]S0v (22)

= Qd[Q−1 −Q−1d ][T0r +Q0d]

−Qd[C0 − C +Q−1d ]S0v (23)

= Q−1[Qd −Q][T0r +Q0d]

−Qd[C0 − C +Q−1d ]S0v, (24)

where t, q, and ρ are omitted for brevity and the equality in
(23) uses (6).

With the two lemmas above, the characteristic C3 is
guaranteed by the following theorem.

Theorem 5. Under the noise assumption and if the matching
condition is met, the correlation between the error (14) and
the experiment input approaches zero as the controller’s
parameter vector approaches the ideal one.

Proof. First consider only noiseless data. In this case, the
error approaches zero as the parameter vector approaches the
ideal one. This happens regardless if open loop (15) or closed
loop (19) data is being used, because Q(q,ρ) approaches
Qd(q) and there is no term left.

Now, consider only open loop data corrupted by noise. In
this case, at the ideal parameter vector only the term from
u(t) vanishes and the error (15) becomes

ε(t,ρ?) = −[1− C(q,ρ?)Q(q,ρ?)]v(t) (25)
= −[1− T (q,ρ?)]v(t) (26)
= −S(q,ρ?)v(t), (27)

which is filtered noise, uncorrelated with u(t) by assumption.
Finally, consider only closed loop data corrupted by noise.

In this case, at the ideal parameter vector the terms from r(t)

and d(t) become zero and the error (19) becomes

ε(t,ρ?) = −Q(q,ρ?)C0(q)S0(q)v(t)

−Q(q,ρ?)[−C(q,ρ?) +Q−1(q,ρ?)]S0(q)v(t)
(28)

= −Q(q,ρ?)[C0(q)−G−1(q)]S0(q)v(t) (29)

= −Q(q,ρ?)G−1(q)v(t) (30)
= −S(q,ρ?)v(t), (31)

where (29) uses again (6), while (30) uses the identity:

G−1(q) = [G−1(q) + C0(q)]S0(q), (32)

which can be easily obtained replacing the definition of
Q0(q) in the left side of (6) and multiplying by S0(q). Again,
the error in (31) is simply filtered noise, uncorrelated by
assumption with the probing signal during the experiment,
either r(t) or d(t).

Because the error variable (14) possesses the three desired
characteristics, it may be employed to estimate the ideal pa-
rameters by seeking the minimum of the correlation between
the error and the experiment input. But first, a correlation
cost function must be defined.

Observe the following approximation of the correlation
between the error variable and any signal x(t) calculated for
τ shifts:

f̂(ρ, τ) =
1

N

∑N

t=1
x(t− τ)ε(t,ρ), (33)

and consider the vector constructed by stacking together 2`+
1 such values calculated for τ ∈ [−`; `]:

f̂(ρ) =
1

N

∑N

t=1
ζ(t)ε(t,ρ), (34)

where ζ(t) is the instrument vector, defined as

ζT(t) =
[
x(t+ `) · · · x(t) · · · x(t− `)

]
, (35)

while ` is a design parameter. Then the 2-norm of the vector
(34) defines the correlation cost function:

JDC(ρ) =
1

N2

∥∥∥∥∑N

t=1
ζ(t)ε(t,ρ)

∥∥∥∥2
2

. (36)

Using this disturbance correlation cost function, an estimate
for the ideal parameter may be calculated according with the
following corollary.

Corollary 6. Under the noise assumption and if the matching
condition is met, an estimate for the ideal controller’s pa-
rameter is given by the solution of the optimization problem:

ρ̂ = arg min
ρ
JDC(ρ), (37)

constructing the instrument vector with samples from the
experiment input.

The problem in (37) may be non-convex, requiring an iter-
ative numerical optimization. However, an analytic solution
is possible when the following condition is met.
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Condition 7 (linearly parameterized controller). The con-
troller is linearly parameterized, which means

C(q,ρ) = ρTβ(q), (38)

where β(q) is a vector of LTI transfer operators describing
the controller’s parameterization structure.

Under the above condition the error variable (14) is

ε(t,ρ) = ũ(t)− φT(t)ρ, (39)

where

ũ(t) = Qd(q)u(t)− y(t) (40)
φ(t) = −β(q)Qd(q)y(t). (41)

Replacing (39) in (36) yields

JDC(ρ) =
1

N2
[ξTξ − 2ξTXρ+ ρTXTXρ], (42)

with

ξ =
∑N

t=1
ζ(t)ũ(t), X =

∑N

t=1
ζ(t)φT(t).

Observe that (42) is convex and its minimizer may be
obtained analytically by

ρ̂ = [XTX]−1[XTξ]. (43)

IV. PRE-FILTERING

Note that when the matching condition is met, (37) (or
(43)) gives a consistent estimate of the ideal parameter vec-
tor. However, when the ideal controller cannot be constructed
with the available structure, the global minima of (5) and (36)
differ. In this case, the error may be filtered by a filter W (q)
in order to force the minimum of (36) close to the minimum
of (5). The data are collected as usual, then only the data
employed to calculate the error variable are pre-filtered by
W (q).

Lemma 8. With the aid of Parseval’s theorem, the distur-
bance response cost (5) may be written in the frequency
domain as

JDR(ρ) =
1

2π

∫ π

−π

∣∣Qd(ejω)−Q(ejω,ρ)
∣∣2Φd(ω) dω, (44)

where Φd(ω) is the power spectral density of the disturbance
signal to be rejected.

Theorem 9. (filter for open loop data) When employing
open loop data, the filter W (q) that makes the cost (36)
asymptotically identical to the cost (5) is one such that

∣∣W (ejω,ρ)
∣∣2 =

∣∣S(ejω,ρ)
∣∣2Φd(ω)

Φ2
x(ω)

, (45)

where Φx(ω) is the spectrum of the experiment input u(t).

Proof. Because of (15), writing the cost (36) in the frequency
domain for open loop data gives

lim
N→∞
`→∞

JDC(ρ) =
1

2π

∫ π

−π
|Φxε(ω)|2 dω (46)

=
1

2π

∫ π

−π

∣∣Qd(ejω)−Q(ejω,ρ)
∣∣2

|S(ejω,ρ)|2

×
∣∣W (ejω,ρ)

∣∣2Φ2
x(ω) dω, (47)

where Φxε(ω) is the cross-power spectral density of the
experiment input u(t) and the error variable ε(t,ρ). The filter
that makes (47) identical to (44) is the one in (45).

Now consider the following conditions.

Condition 10. The desired behaviour is not too far from
what can be achieved, i.e. Qd(ejω) ≈ Q(ejω,ρ?).

Condition 11. The signal to noise ratio during the ex-
periment is high enough, which means that in open loop
Φy(ω) ≈

∣∣G(ejω)
∣∣2Φx(ω), while in closed loop either

Φy(ω) ≈
∣∣Q0(ejω)

∣∣2Φx(ω) or Φy(ω) ≈
∣∣T0(ejω)

∣∣2Φx(ω).

Condition 12. The experiment input is constructed such that
its spectrum is similar to the spectrum of the disturbance to
be rejected, which means that Φx(ω) ≈ Φd(ω).

Observe that Condition 10 depends on a good matching
between the reference model and the controller structure,
while Conditions 11 and 12 depend on experiment design.

Corollary 13. If Conditions 10–12 are met, the filter (45)
may be approximated by

∣∣W (ejω)
∣∣2 ≈ ∣∣Q(ejω,ρ?)

∣∣2Φd(ω)

|G(ejω)|2Φ2
x(ω)

(48)

≈
∣∣Q(ejω,ρ?)

∣∣2Φd(ω)

Φy(ω)Φx(ω)
(49)

≈
∣∣Qd(ejω)

∣∣2
Φy(ω)

, (50)

which forces the minimum of (47) close to the one of (44).

Regarding data collected during a closed loop experiment
exciting the system through the reference input, the next
theorem provides the filter that compensates the mismatching
between the controller structure and the reference model.

Theorem 14. (closed loop filter, probing with reference)
When employing closed loop data obtained by exciting the
reference input, the filter W (q) that makes the cost (36)
asymptotically identical to the cost (5) is one such that

∣∣W (ejω,ρ)
∣∣2 =

∣∣Q(ejω,ρ)
∣∣2Φd(ω)

|T0(ejω)|2Φ2
x(ω)

, (51)

where Φx(ω) is the spectrum of the experiment input r(t).

Proof. Because of (19), writing the cost (36) in the frequency
domain for closed loop data exciting through the reference
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input gives

lim
N→∞
`→∞

JDC(ρ) =
1

2π

∫ π

−π

∣∣Qd(ejω)−Q(ejω,ρ)
∣∣2

|Q(ejω,ρ)|2

×
∣∣T0(ejω)

∣∣2∣∣W (ejω,ρ)
∣∣2Φ2

x(ω) dω, (52)

where Φxε(ω) is the cross-power spectral density of the
experiment input r(t) and the error variable ε(t,ρ). The filter
that makes (52) identical to (44) is the one in (51).

Corollary 15. If Conditions 10–12 are met, the filter (51)
may be approximated by∣∣W (ejω)

∣∣2 ≈ ∣∣Q(ejω,ρ?)
∣∣2Φd(ω)

|T0(ejω)|2Φ2
x(ω)

(53)

≈
∣∣Q(ejω,ρ?)

∣∣2Φd(ω)

Φy(ω)Φx(ω)
(54)

≈
∣∣Qd(ejω)

∣∣2
Φy(ω)

, (55)

which forces the minimum of (52) close to the one of (44).

Finally, regarding data collected during a closed loop
experiment exciting the system through the disturbance input,
the next theorem provides the filter that compensates the mis-
matching between the controller structure and the reference
model.

Theorem 16. (closed loop filter, probing with disturbance)
When employing closed loop data obtained by exciting the
disturbance input, the filter W (q) that makes the cost (36)
asymptotically identical to the cost (5) is one such that∣∣W (ejω,ρ)

∣∣2 =

∣∣Q(ejω,ρ)
∣∣2Φd(ω)

|Q0(ejω)|2Φ2
x(ω)

, (56)

where Φx(ω) is the spectrum of the experiment input d(t).

Proof. Because of (19), writing the cost (36) in the frequency
domain for closed loop data exciting through the disturbance
input gives

lim
N→∞
`→∞

JDC(ρ) =
1

2π

∫ π

−π

∣∣Qd(ejω)−Q(ejω,ρ)
∣∣2

|Q(ejω,ρ)|2

×
∣∣Q0(ejω)

∣∣2∣∣W (ejω,ρ)
∣∣2Φ2

x(ω) dω, (57)

where Φxε(ω) is the cross-power spectral density of the
experiment input d(t) and the error variable ε(t,ρ). The filter
that makes (57) identical to (44) is in (56).

Corollary 17. If Conditions 10–12 are met, the filter (56)
may be approximated by∣∣W (ejω)

∣∣2 ≈ ∣∣Q(ejω,ρ?)
∣∣2Φd(ω)

|Q0(ejω)|2Φ2
x(ω)

(58)

≈
∣∣Q(ejω,ρ?)

∣∣2Φd(ω)

Φy(ω)Φx(ω)
(59)

≈
∣∣Qd(ejω)

∣∣2
Φy(ω)

, (60)

which forces the minimum of (57) close to the one of (44).

V. CASE STUDY

In this section a commercial PID controller [10] is adjusted
in order to evaluate the applicability of the proposed solution.
That controller is part of a thermal plant that also comprises
a heating element and a thermocouple type K sensor. The
heating element is driven by the controller’s internal relay
which, in turn, is controlled by a PWM signal with cycling
period of 0.5 seconds. The whole process may be approxi-
mated by a first order plus delay system and the objective of
the adjusting is to tune the load disturbance response in a way
that step disturbances are rapidly rejected while preventing
large deviations from the setpoint.

First, the controller’s self tuning function is employed to
obtain a preliminary adjusting from where the designer may
choose a better reference model. The resulting controller is a
full PID controller. It is worth mentioning that the self tuning
function is aimed at reference tracking, resulting in poor load
disturbance rejection behaviour. After running the self tuning
routine, a setpoint of 120 ◦C is selected and the system is
allowed to settle. Then a closed loop experiment is performed
by changing the value of the controller output’s bias, i.e.
injecting a known disturbance, and collecting the process
input and output. The sampling period is 1 second and the
disturbance employed comprises 4 periods of a square wave,
each period with 120 samples (2 minutes) with levels ±2%
of the pulse width. The whole experiment takes 8 minutes
and the data collected is presented in Figure 1.

Sometimes it is difficult to perform an experiment exciting
the disturbance input directly, while exciting the system
through the reference input is common practice. Therefore,
simulating this situation, the data effectively employed to
adjust the controller’s parameters is collected during another
closed loop experiment where, this time, the reference input
(setpoint) is excited with a square wave with levels ±2 ◦C.
The data collected during this new experiment is presented
in Figure 2. That data compose the dataset Z480

r that will be
employed during the tuning.

The desired closed loop response is represented by the
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Fig. 1. System’s initial response to a square wave disturbance.
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Fig. 2. Data collected with a square wave reference.

following reference model:

Qd(q) =
0.2q−1(1− q−1)

(1− 0.9q−1)2
, (61)

which rejects step disturbances in less than 60 seconds and
presents a peak with less than 0.4 times the disturbance’s
amplitude in the system’s units. The controller structure
chosen to be tuned is a PI controller, i.e. the derivative part
of the controller is turned off. Therefore, the controller is
parameterized as follows:

C(q,ρ) = Kp +Ki
1

1− q−1
, (62)

where Kp and Ki are the proportional and integral gains to
be estimated.

The controller’s optimal parameters are estimated through
(43) using the instrumental variable (35) constructed with
samples of the reference signal and ` = 60. On the other
hand, ũ(t) and φ(t) are constructed with data filtered through
the following filter:

W (q) = Qd(q)F (q), (63)

from (55), where F (q) is a FIR filter whose coefficients are
taken from the inverse Fourier transform of 1/Y (ω).

Because the actual controller’s parameterization is differ-
ent from (62), the parameters estimated must be converted
to the actual controller’s. After adjusting the controller’s
parameters, another experiment is performed, similar to the
first one. The data obtained during that second experiment
is presented in Figure 3, representing the final closed loop
behaviour. Observe that the system’s disturbance response
is much faster and has a much lower peak amplitude than
the initial response to the same signal presented before in
Figure 1.

VI. CONCLUSION

This paper presented a direct data driven method for
adjusting the controller’s parameters in order to force the
closed loop load disturbance response close to the response
of a desired reference model. The proposed method uses the
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Fig. 3. System’s final disturbance response, after the tuning.

correlation approach from the system identification litera-
ture to estimate the optimal parameters regarding the load
disturbance response. In order to evaluate the applicability
of the proposed solution, a case study is performed on a
thermal process controlled by a commercial controller. A
batch of data is collected during a closed loop experiment
exciting the system through the reference input and the
controller’s parameters are estimated by the method pro-
posed. The system’s final disturbance response is compared
with the response obtained with the controller’s own self
tuning routine. The method proposed is capable of tuning
the commercial controller and presents a better disturbance
response, indicating its applicability.
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