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Iterative data-based controller tuning consists of iterative adjustment of the controller parameters towards the
parameter values which minimize an H2 performance criterion. The convergence to the global minimum of the
performance criterion depends on the initial controller parameters and on the step size of each iteration. This
paper presents convergence properties of iterative algorithms when they are affected by disturbances.
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1. Introduction

Several data-based control design methods utilize iterative algorithms to find the minimum of
H2 performance criteria, which express either one or a combination of the fundamental control
objectives: reference tracking, noise rejection and economical use of control energy. These itera-
tive data-based methods utilize data obtained from an experiment to compute estimates of the
gradient of the cost function and maybe of its Hessian. These estimates are then used to feed an
iterative optimization algorithm, such as the steepest descent or the Newton-Raphson method.
Such methods as Frequency Domain Tuning (FDT) (Kammer et al. 2000), Correlation based
Tuning (CbT) (Karimi et al. 2004, 2003) and Iterative Feedback Tuning (IFT) (Hjalmarsson
et al. 1998, Gevers 2002) share this same formulation, which is also common to Model Reference
Adaptive Controllers (MRAC) (Wang 1999). They differ from each other both in the partic-
ular H2 performance criterion each one minimizes and in the particular means of obtaining
appropriate estimates of the quantities necessary for the minimization.
The choice of the step size is critical to the performance of the algorithms (Hjalmarsson et al.

1998, Kammer et al. 2000, Karimi et al. 2004). The classical choice of the step size (Hjalmarsson
et al. 1998, Hjalmarsson 2002) is robust to uncertainty on the estimates but only ensures local
convergence and it has low convergence rate. More recent results on the choice of the step size
can ensure convergence to the global minimum (when the initial condition is inside the domain
of attraction) with high convergence rate but do not deal with disturbances on the estimates
(Bazanella et al. 2008, Eckhard and Bazanella 2009, 2010). The aim of this work is to bridge
this gap, by providing robustness guarantees for these faster step size choices.
The paper is organized as follows. Section 2 presents the definitions and the problem statement,

and in Section 3 iterative algorithms are given. The step size policies are shown in Section 4.
Section 5 presents the main result of this work. Simulations are presented in Section 6 and
concluding remarks are given in Section 7.
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2. System definitions and notation

Consider a linear time-invariant discrete-time single-input single-output process

y(t) = G(q)u(t) + ν(t), (1)

where q is the forward time-shift operator, G(q) is the process transfer function, assumed rational
and proper, u(t) is the control input and ν(t) is the process noise. The noise is a quasi-stationary
process which can be written as ν(t) = H(q)e(t), where e(t) is white noise with variance σ2

e .
This process is controlled by a linear time-invariant controller C(q, ρ) which is assumed to have
a parametric structure as specified below.

Assumption 2.1 Linear Parametrization

C(q, ρ) = ρT C̄(q),

where ρ ∈ Dρ ⊆ Rp and C̄(q) is a column vector of fixed rational functions.

The control action u(t) is given by

u(t) = C(q, ρ)(r(t)− y(t)), (2)

where r(t) is the reference signal, which is assumed to be quasi-stationary and uncorrelated with
the noise. The closed-loop system (1)-(2) becomes

y(t, ρ) = T (q, ρ)r(t) + S(q, ρ)ν(t)

T (q, ρ) !
C(q, ρ)G(q)

1 + C(q, ρ)G(q)
= C(q, ρ)G(q)S(q, ρ).

Let us define the set Γ of all control parameters values that render the closed-loop system
BIBO-stable, that is, Γ ! {ρ : T (q, ρ) is BIBO-stable}.
We want the closed-loop to achieve a given performance which is specified by a “desired”

closed-loop transfer function

yd(t) = Td(q)r(t),

called the reference model. We thus search for the controller parameters that make the output
of the system the closest to the desired one, by solving the following optimization problem.

min
ρ

J(ρ)

J(ρ) ! Ē
[

((T (q, ρ) − Td(q))r(t))
2
]

. (3)

Once the desired closed-loop transfer function Td(q) is chosen, it could be exactly achieved with
the ideal controller

Cd(q) =
Td(q)

G(q)(1 − Td(q))
. (4)

This is the controller that minimizes the tracking error criterion J(ρ). If and only if the ideal
controller Cd(q) lies within the class of controllers considered the closed-loop system can behave
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exactly as specified by the reference model. Let us formalize this assumption, which is referred
as the Matched Control Case:

Assumption 2.2

∃ρd ∈ Dρ : C(q, ρd) = Cd(q) = ρTd C̄(q).

We know from (Bazanella et al. 2008) that if Assumption 2.2 is ensured then the gradient can
be written as

∇J(ρ) =
∂J(ρ)

∂ρ
= M(ρ)(ρ− ρd) (5a)

M(ρ) =
1

π

∫ π

−π

Φr(e
jω)

∣

∣G(ejω)S(ejω, ρ)
∣

∣

2
ℜ
{

S∗

d(e
jω)S(ejω, ρ)C̄(ejω)C̄∗(ejω)

}

dω (5b)

where ℜ{·} denotes the real part of a complex number.

3. The steepest descent algorithm

In adaptive control and data-based control design a model for the process is not known a priori,
so neither is the cost function J(ρ). Only local information about the cost function can be
obtained from data collected on the system, so it is very common to use iterative gradient-based
methods to find a minimum of the cost function. The steepest descent algorithm has the following
structure

ρi+1 = ρi − γi∇J(ρi) (6)

where γi > 0 ∀i. The updates of the algorithm are made in the opposite direction of the gradient,
so, at least for sufficiently small γi, at each iteration a smaller value for the cost is achieved.
Each data-based method utilizes a different manner to estimate the gradient of the cost func-

tion ∇J(ρ). The method Frequency Domain Tuning (FDT) (Kammer et al. 2000) uses a fre-
quency domain approach to obtain the estimates considering zero reference. The method Corre-
lation based Tuning (CbT) (Karimi et al. 2004) uses instrumental variables ideas. The method
Iterative Feedback Tuning (IFT) (Hjalmarsson et al. 1998, Hjalmarsson 2002, Gevers 2002) uses
data form two specific closed-loop experiments to generate an unbiased estimate of the cost
function gradient. Whatever the procedure used to estimate the gradient, a stochastic error in
this estimate exists. Robustness of the convergence properties with respect to this error is the
concern of this paper.
A major concern in optimization, and particularly in the H2 control design formulation, is the

convergence to the global minimum of the performance criterion. This can usually not be achieved
globally, that is, regardless of the initialization of the algorithm, so we define the following.

Definition 3.1 A set Ω ⊂ Rp is a domain of attraction of an algorithm ρi+1 = f(ρi) for the
function J(ρ) if limi→∞ ρi = ρd,∀ρ0 ∈ Ω.

When the steepest descent algorithm is used and the initial condition is sufficiently close to the
global minimum, convergence to it depends only on the step size sequence γi. So, the problem
of ensuring convergence of the steepest descent algorithm boils down to choosing appropriately
the sequence of step sizes γi. However, this is not straightforward. If the step sizes are too large
then the algorithm may leave the domain of attraction; if they are too small then the algorithm
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may need too many iterations to converge. In the next section two ways to compute the step
size sequence will be shown.

4. Step size sequence

4.1 Robins Monroe

Several papers on data-based control give the following classical result as a theoretical foundation
for the choice of the step size sequence.

Theorem 4.1 : (Hjalmarsson et al. 1998, Hjalmarsson 2002) If the optimization problem is
unconstrained, the estimate of the gradient is uniformly bounded and the step size γi of the
steepest descent algorithm respects the following conditions:

∞
∑

i=1

γi = ∞
∞
∑

i=1

γ2i < ∞

then

lim
i→∞

ρi = {ρ : ∇J(ρ) = 0}.

A “classical” choice of the step sizes, which satisfies these conditions, is the harmonic series
(Hjalmarsson et al. 1998, Huusom et al. 2009):

γi =
γ1
i
; i > 1. (7)

This result shows that if the step size sequence respects (7) then the algorithm converges to an
extremum of the cost function. The proof of the theorem is based on the stochastic convergence
of the sequence ρi, so this step size sequence ensures convergence to an extremum even when the
estimates of the gradient are affected by noise. This step sequence choice is theoretically justified,
and as such is often presented as a benchmark, although it tends to provide poor convergence
rates. Also, the choice of the step size of the first iteration is critical in the application of this
policy.

4.2 Proposed step size

Some recent works present a way to design the step size sequence whose convergence rate seems
to be the highest for which one can guarantee convergence in a general setting (Eckhard and
Bazanella 2009). The following rule to choose the step size sequence is proposed

γi =
λmin(sym(M(ρi)))

∥MT (ρi)M(ρi)∥
(8)

where λmin(·) denotes the minimum eigenvalue and sym denotes the symmetrical part of a
matrix sym(X) = (X + XT )/2. It was shown in (Eckhard and Bazanella 2009) that this step
size makes the algorithm converge to the minimum faster than the classical choice (7). However,
this result was not developed considering the effects of disturbances on the estimates, so they do
not ensure convergence when there is noise affecting the estimates. This work intends to show
what happens to the steepest descent algorithm when the step size (8) is used and the estimates



January 24, 2011 11:23 International Journal of Systems Science article˙final

5

are disturbed. It will be shown that in this case the algorithm converges to a set whose size is
proportional to the magnitude of the disturbance and that is centred at the global minimum.

5. Robustness

In this section it is analysed the convergence of the algorithm (6) when the gradient estimates are
disturbed. The source of this disturbance most commonly comes from the estimates of the cost
function gradient. Most the data-based methods present unbiased estimates to the cost function
gradient, however these estimates have variance errors. In this section it will be considered
that the step size sequence γi is designed to ensure convergence considering that there are no
disturbances affecting the algorithm as presented in (Eckhard and Bazanella 2009). Then it will
be shown that under mild assumptions on the disturbance the disturbed algorithm converges to
a set that includes the global minimum.
Our first result shows that a discrete time system that has a minimum convergence rate,

when disturbed converges to a set centred at the minimum and whose size is proportional to
the disturbance magnitude. Then, it will be shown that the steepest descent algorithm has a
minimum convergence rate when the step size (8) is used. It will be concluded that the disturbed
steepest descent algorithm converges to a set centred at the global minimum when the step size
policy (8) is used.

Lemma 5.1: Consider a discrete time system

xi+1 = f(xi)

with equilibrium point x∗ admitting a quadratic Lyapunov function

V (xi) = (xi − x∗)
T (xi − x∗)

and that ∃β < 1,α > 0 such that

V (f(x)) < β2V (x), ∀x ∈ Bα(x∗).

where

Bα(x∗) = {x : ∥(x− x∗)∥ < α} .

Consider also that the system is perturbed by the disturbance gi

xi+1 = f(xi) + gi (9)

where ∥gi∥ < δ ∀i. Consider the set

S(x∗) =

{

xi : ∥(x− x∗)∥ <
δ

1− β

}

.

and that S(x∗) ⊂ Bα(x∗). Then for all x0 ∈ Bα(x∗) the disturbed system (9) converges to the
invariant set S(x∗).

Proof To study the convergence of the system, the quadratic Lyapunov function V (xi) is used,
along with a candidate domain of attraction Bα(x∗). For all x0 ∈ Bα(x∗) the disturbed system
(9) converges to S(x∗) if

V (xi+1)− V (xi) < 0; ∀xi ∈ {Bα(x∗)− S(x∗)}. (10)
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Using the conditions of the theorem

V (xi+1)− V (xi) = ∥(f(xi)− x∗)∥
2 − ∥(xi − x∗)∥

2 + 2gTi ∥(f(xi)− x∗)∥+ gTi gi

< β2∥(xi − x∗)∥
2 − ∥(xi − x∗)∥

2 + 2δβ∥(xi − x∗)∥+ δ2 ∀xi ∈ Bα(x∗). (11)

Then a sufficient condition to ensure (10) is

(β∥(xi − x∗)∥+ δ)2 − ∥(xi − x∗)∥
2 < 0 ∀xi ∈ {Bα(x∗)− S(x∗)}.

From the definition of S(x∗) it is easy to see that the above condition is always verified. It is
still necessary to show that S(x∗) is an invariant set. From the assumptions of the theorem, if
xi ∈ S(x∗) then

∥xi+1 − x∗∥ = ∥f(xi)− x∗ + gi∥ < ∥f(xi)− x∗∥+ ∥gi∥ < β∥xi − x∗∥+ ∥gi∥ <
βδ

1− β
+ δ =

δ

1− β

which verifies that S(x∗) is invariant.
"

This theorem shows that the system disturbed by gi converges to an invariant set if the
undisturbed system has a minimum convergence rate β. This set is centred at x∗ and it has a
ball shape with radius δ

1−β . It is interesting to observe that the size of the set is proportional to
the disturbance magnitude and it is also function of the convergence rate β.
In the following it is presented a theorem which shows that the steepest descent algorithm,

with the step size (8), has a minimum convergence rate, under some assumptions on the gradient
of the cost function.

Theorem 5.2 : Consider the steepest descent algorithm with the step size sequence (8). Con-
sider that Assumption 2.2 is verified and a set D ∋ ρ∗. If the following conditions are respected

(1)

a < ∥M(ρ)∥ < b ∀ρ ∈ D (12)

(2)

M(ρ) > c ∀ρ ∈ D (13)

then

∥ρi+1 − ρ∗∥
2 < (1−

a2c2

b4
)∥ρi − ρ∗∥

2 ∀ρi ∈ D

Proof Using the rule (8) and the conditions of the theorem, the step size sequence is such that

γi >
c

b2
∀ρi ∈ D.

Now, we can show that

∥γi∇J(ρi)∥ = γi∥∇J(ρi)∥ >
c

b2
∥∇J(ρi)∥ >

ac

b2
∥ρi − ρ∗∥ ∀ρi ∈ D. (14)

It is easy to show that the rule (8) also ensures that the angle between (ρi+1 − ρ∗) and ∇J(ρi)
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is always larger than π
2 rad, so

∥ρi+1 − ρ∗∥
2 < ∥ρi − ρ∗∥

2 − ∥γi∇J(ρi)∥
2. (15)

So, using (14) and (15) it is possible to establish the minimum convergence rate of the algorithm

∥ρi+1 − ρ∗∥
2 < (1−

a2c2

b4
)∥ρi − ρ∗∥

2 ∀ρi ∈ D.

"

This theorem proves, under some weak conditions about the gradient of the cost function, that
the steepest descent algorithm using the step size (8) has a minimum convergence rate (1− a2c2

b4 ).
The conditions of the theorem imply that ∥ρi − ρ∗∥a < ∥∇J(ρi)∥ < b∥ρi − ρ∗∥ and that the
angle between the gradient of the cost function and (ρi − ρ∗) is smaller than π/2 rad. The two
implications cannot be considered very conservative from the authors’ point of view.
If the result of the Lemma 5.1 is used together with the result of the Theorem 5.2, it is possible

to show that the steepest descent algorithm is robust to disturbances.

Corollary 5.3: Consider that the steepest descent algorithm is perturbed

ρi+1 = ρi − γi∇J(ρi) + gi (16)

where ∥gi∥ < δ ∀i. Consider that a < ∥M(ρ)∥ < b,M(ρ) > c ∀ρ ∈ D. Consider that the step size
is chosen by (8). Consider also the set

Z(ρd) =

{

ρ : ∥(ρ− ρd)∥ <
δb2

a2c2

}

.

and that Z(ρd) ⊂ D. Then ∀ρ0 ∈ D the disturbed steepest descent algorithm (16) converges to
the invariant set Z(x∗).

This result’s relevance is that it shows that the step size policy presented in (Eckhard and
Bazanella 2009) not only ensures convergence to the global minimum with high convergence
rate, but also these advantageous properties are kept when there are disturbances affecting the
algorithm.
The next section presents simulations that compare the convergence between the disturbed

algorithm and the undisturbed one.

6. Simulations

Consider the following system

y(t) =
0.1

z − 0.8
u(t). (17)

This system is controlled by a PI controller

C(q, ρ) =
[

ρ1 ρ2
] [

1 z
z−1

]T
. (18)

The following reference model is specified:

yd(t) =
0.1

z − 0.9
r(t). (19)
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It is known that the above reference model can be achieved by the controller

Cd(q) =
[

0.8 0.2
] [

1 z
z−1

]T
. (20)

We consider that the system is initially in closed-loop with the controller

C(q, ρ) =
[

0.7 0.15
] [

1 z
z−1

]T
. (21)

We want now to improve the closed-loop performance utilizing the algorithm (6) where ∇J(ρ)
is substituted by the estimate based on data of the method Iterative Feedback Tuning (IFT).
The following reference signal, which is conceived to guarantee persistence of excitation, is used
to obtain the data:

r(t) = square

(

2πt

256

)

,

where square
(

2πt
T

)

stands for a square wave with period T .
Figure 1 and Figure 2 show the evolution of the controller parameters for 100 iterations using

the proposed sequence of step sizes with disturbance (δ = 0.01) and without disturbance (δ = 0).
It is possible to see in the figures that the disturbed algorithm converged to a set that includes
the global minimum.
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Figure 1. Convergence of the undisturbed and disturbed algorithm.

7. Conclusion

This paper discussed the convergence of the iterative data-based controller tuning when the
steepest descent algorithm is disturbed. The classical choice of the step sizes is robust to uncer-
tainties but presents low convergence rates. Some recent results on the choice of the step size
present high convergence rate but do not deal with disturbances on the estimates. This work
studied these faster algorithms and has shown that when there are disturbances, the algorithm
converges to a ball centred at the global minimum. The ball size is function of the perturbation
magnitude and of the minimum convergence rate of the undisturbed algorithm. This work dealt
only with SISO systems. We propose to extend the results to MIMO systems in a future work.
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