
1

Optimizing the Convergence of Data-Based
Controller Tuning

Diego Eckhard and Alexandre Sanfelice Bazanella

Abstract—Data-based control design methods most often con-
sist of iterative adjustment of the controller’s parameters to-
wards the parameter values which minimize an H2 performance
criterion. Typically, batches of input-output data collected from
the system are used to feed directly a gradient descent opti-
mization algorithm - no process model is used. Two topics are
important regarding this algorithm: the convergence rate and
the convergence to the global minimum. This paper discusses
these issues and provides a method for choosing the step size to
ensure convergence with high convergence rate, as well as a test
to verify at each step whether or not the algorithm is converging
to the global minimum.
Index Terms—Control systems, Optimization methods, Gradi-

ent methods.

I. INTRODUCTION
Data-based controller tuning methods have drawn consid-

erable attention in the control community in the last fifteen
years. Several methods have appeared such as Controller
Unfalsification [20], Iterative Feedback Tuning [10], [8], Vir-
tual Reference Feedback Tuning [4], [15], Correlation based
Tuning [13], [14] and Frequency Domain Tuning [12]. Several
of these data-based control design methods utilize iterative
algorithms to find the minimum of an H2 performance criteria;
this is the case of Iterative Feedback Tuning, Correlation
based Tuning and Frequency Domain Tuning. These iterative
data-based methods utilize data obtained from one or more
experiments in order to compute estimates of the cost function
gradient and maybe of its Hessian. These estimates are then
used to feed an iterative optimization algorithm, such as
steepest descent or Newton-Raphson method. The methods
Virtual Reference Feedback Tuning and Noniterative Correla-
tion based Tuning are “direct” (meaning not iterative) but they
are also based on the optimization of the sameH2 performance
criteria. Both direct and iterative methods have overlapping,
yet different particular application fields, dictated not only by
their performance and requirements, but also by operational
constraints and the users’ preferences and background.
Regarding the experiments used in data-based design meth-

ods, they tend to be more complex as more information is
required - it requires more data to obtain a good enough esti-
mate of the Hessian than to estimate the gradient, for instance.
A major credential for a data-based design is simplicity, both
in terms of the information required for the optimization and
in the number of algorithm parameters to be commissioned.
Then an algorithm of choice is naturally the steepest descent
algorithm, which requires estimation of the cost function’s
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gradient only - and not of the cost function’s Hessian, as other
algorithms do - and whose only design parameter is the step
size. So, in this paper we focus on the gradient algorithm
but extending the reasoning and the results for other descent
methods is in sight.

Although very good results have been reported over the
years [10], [12], [13], little is said about the convergence
of the algorithms. The convergence of the steepest descent
algorithm depends on the tuning of the size of each algorithm
step, and this tuning tends to involve expert intervention by
a designer on a case-by-case basis, which is highly undesired
in the contexts in which data-based methods are intended to
be applied. Indeed, what is desirable in adaptive and data-
based control design is to have general policies for the step
size choice, involving no human intervention whatsoever, so
that the method can be applied in a fully automated manner.
Moreover, a limiting factor in the application of these iterative
data-based design methods is the possible (and quite common)
convergence to local (nonglobal) minima of the criterion. It
would be highly desirable to verify at each step of the algo-
rithm whether or not it is converging to the global minimum.

This contribution advances in two directions. First, a test
is provided for checking at each iteration whether or not
the algorithm is converging to the global minimum. Second,
whenever this test yields a positive answer, the step size at each
iteration can be chosen to speed up convergence. If, on the
other hand, this test yields a negative answer, then measures
can be taken to enforce convergence to the global minimum
[1], but these are outside the scope of this paper. Initial results
of this work were presented in [5], however the current results
are less conservative. It is assumed in this paper that the
data collected from the process is not corrupted by noise; the
resulting properties of the iterative data-based control design
algorithms are proven under this assumption. We have proven
elsewhere [6] that the relevant properties which are obtained
when the data are noiseless are robust to the presence of noise,
so this issue is not discussed in this paper.

The paper is organized as follows. Section 2 presents the
definitions and the problem statement, and in section 3 iterative
algorithms are presented. Section 4 presents the main result
of this work. Case studies are presented in section 5 and
concluding remarks are given in section 6.
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II. PRELIMINARIES
A. System definitions and notation
Consider a linear time-invariant discrete-time single-input

single-output process

y(t) = G(z)u(t) + ν(t), (1)

where z is the forward time-shift operator, G(z) is the process
transfer function, assumed rational and proper, u(t) is the con-
trol input and ν(t) is the process noise. The noise is a quasi-
stationary process which can be written as ν(t) = H(z)e(t),
where e(t) is white noise with variance σ2

e . This process is
controlled by a linear time-invariant controller C(z, ρ) such
that C(z, ρ)G(z) has positive relative degree for all ρ ∈ Dρ. It
is further assumed that the controller has a parametric structure
as specified below.
Assumption 1: Linear Parametrization

C(z, ρ) = ρT C̄(z), (2)

where ρ ∈ Dρ ⊆ Rp and C̄(z) is a column vector of fixed
rational functions.
Some of the most common controller structures are linearly

parametrized, PID with fixed derivative pole being the most
popular. Indeed, a PID can be written as

C(z, ρ) =
[

kp ki kd
] [

1 z
z−1

z−1
z

]T
.

In addition, any transfer function with any dependence on
ρ can be approximated by a transfer function of the form (2).
Indeed, one can always choose a set of basis functions such
that a transfer function - say F (z) - can be represented as

F (z) =
∞
∑

i=1

αifi(z) (3)

where αi ∈ R and fi(z) are the basis transfer functions. One
example of a celebrated choice for this basis are the Laguerre
functions:

fi(z) =

√
1− a2

(z − a)

[

1− az

z − a

]i

where a ∈ (−1, 1). A truncation of the series in (3) yields

F (z) ∼=
p

∑

i=1

αifi(z)

which can approximate the transfer function to any degree
of accuracy desired by choosing sufficiently large p [2]. For
these practical and theoretical reasons, Assumption 1 does not
represent a relevant loss of generality.
The control action u(t) is given by

u(t) = C(z, ρ)(r(t) − y(t)), (4)

where r(t) is the reference signal, which is assumed to be
quasi-stationary and uncorrelated with the noise, that is

Ē [r(t)e(s)] = 0 ∀t, s (5)

where Ē[f(t)] = limN→∞

1
N

∑N
t=1

E[f(t)] and E[·] denotes
expectation [17]. The system (1)-(4) in closed-loop becomes

y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)ν(t)

T (z, ρ) !
C(z, ρ)G(z)

1 + C(z, ρ)G(z)
= C(z, ρ)G(z)S(z, ρ)

where we have now made the dependence on the controller
parameter ρ explicit in the output signal y(t, ρ). Let us
define the set Γ of all control parameters values that render
the closed-loop system BIBO-stable, that is, Γ ! {ρ :
T (z, ρ) is BIBO-stable}.

B. The Model Reference Control Problem
We want the closed-loop to achieve a given performance

which is specified by a “desired” closed-loop transfer function

yd(t) = Td(z)r(t),

called reference model in the literature. We thus search for
the controller parameters that make the output of the system
the closest to the desired one, by solving the following
optimization problem.

min
ρ

J(ρ)

J(ρ) ! Ē
[

(y(t, ρ)− yd(t))
2
]

. (6)

Under the hypothesis (5), the cost function (6) can be
divided into two terms [1]:

J(ρ) = Jy(ρ) + Je(ρ) (7)

where each term represents a conceptually different control
objective:

• reference tracking:

Jy(ρ) = Ē
[

((Td(z)− T (z, ρ))r(t))2
]

; (8)

• noise rejection:

Je(ρ) = Ē
[

(S(z)ν(t))2
]

. (9)

The method Frequency Domain Tuning (FDT) [12] mini-
mizes the performance criterion Je(ρ). It assumes that there
is no reference and the gradient of the criterion is obtained
by a frequency domain approach. On the other hand, the
method Correlation based Tuning (CbT) [13] optimizes the
performance criterion Jy(ρ). The method Iterative Feedback
Tuning (IFT) uses data from two closed-loop experiments to
obtain an estimate to the gradient of J(ρ), so both reference
tracking and noise rejection are taken into account.
In this work only the reference tracking problem (Jy) is

considered; the development for noise rejection is very similar.
Once the desired closed-loop transfer function Td(z) is chosen,
it could be exactly achieved with the ideal controller

Cd(z) =
Td(z)

G(z)(1− Td(z))
. (10)

This controller is the one that minimizes the tracking error
criterion Jy , causing this performance criterion to be evaluated
at zero. Note however, that this controller can be unstable
and/or non-causal if the reference model Td(z) is not chosen
properly. To avoid these problems the relative degree of the
reference model Td(z) can not be smaller than the relative
degree of the process G(z), and all the nonminimum phase
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zeros of the process must be present in the reference model.
These are constraints that must be taken into account at an
earlier stage of the design, when an appropriate reference
model must be chosen. Of course, such a choice requires some
minimum knowledge about the process, but certainly not a
model.
If and only if the ideal controller Cd(z) lies within the class

of controllers considered the closed-loop system can behave
exactly as specified by the reference model. We will assume in
this work that it is the case. Let us formalize this assumption,
which is referred to as the Matched Control Case:
Assumption 2:

∃ρd ∈ Dρ : C(z, ρd) = Cd(z) = ρTd C̄(z).

This hypothesis is equivalent to the standard assumption in
system identification that the process being identified belongs
to a given model class [17] [7] and as such implies similar
properties and similar difficulties. In order to have Assumption
2 satisfied, it is necessary to chose the reference model such
that the ideal controller is causal, which requires knowledge of
an upper bound for the relative degree of the process’ transfer
function. On the other hand, for nonminimum phase processes
Assumption 2 requires the reference model to possess the
nonminimum phase zeroes of the process in order to avoid
unstable pole-zero cancelations, which in principle would
require an earlier identification stage to identify these zeroes.
Alternatives to this previous identification have been proposed
for IFT and for VRFT in [16] and [3] respectively.
Under Assumptions 1 and 2, a direct method such as VRFT

or CbT could be used to tune the controller’s parameters, and
avoiding iterations is in principle advantageous. Still, iterative
adjustments of the controller’s parameters of an operating
controller may be preferred over an abrupt change of the
parameters in many practical situations, mainly for operational
reasons, even under these Assumptions. Moreover, the direct
methods rely on Assumption 2 to yield the correct answer,
which is the global minimum of the performance criterion Jy
[4], [13], whereas the iterative methods only rely on these
hypothesis to optimize convergence.
We know from [1] that if Assumption 2 is ensured then the

gradient can be written as

∇Jy(ρ) =
∂Jy(ρ)

∂ρ
= M(ρ)(ρ− ρd) (11a)

M(ρ) = Ms(ρ) +Ma(ρ) (11b)

Ms(ρ) =
1

π

∫ π

−π

Φr(e
jω)

∣

∣G(ejω)S(ejω , ρ)
∣

∣

2 × (11c)

ℜ
{

S∗

d(e
jω)S(ejω, ρ)

}

ℜ
{

C̄(ejω)C̄∗(ejω)
}

dω

Ma(ρ) = −
1

π

∫ π

−π

Φr(e
jω)

∣

∣G(ejω)S(ejω , ρ)
∣

∣

2 × (11d)

ℑ
{

S∗

d(e
jω)S(ejω , ρ)

}

ℑ
{

C̄(ejω)C̄∗(ejω)
}

dω

The matrix Ms(ρ) is symmetric, whereas Ma(ρ) is anti-
symmetric, ℜ{·} denotes the real part and ℑ{·} the imaginary
part of a complex number and the desired sensitivity function
is defined as Sd(z) = 1− Td(z).

III. ITERATIVE ALGORITHMS
In adaptive control and data-based control design a model

for the process is not known a priori, so neither is the cost
function J(ρ). Only local information about the cost function
can be obtained from data collected on the system, so iterative
gradient-based methods are used to find a minimum of J(ρ).
The algorithms have the following structure

ρi+1 = ρi − γiR
−1
i ∇J(ρi) (12)

where Ri ∈ Rp×p and γi > 0 ∀i. When Ri is the identity
matrix for all i the algorithm is called steepest descent and
the updates are made in the opposite direction of the gradient,
so, at least for sufficiently small γi, at each iteration a smaller
value for the cost is achieved. If Ri is an estimate of the
Hessian of the criterion and γi = 1 then the algorithm is
called Newton-Raphson method.
Several papers on data-based control give the following

classical result [19] as a theoretical foundation for the analysis
of the convergence of algorithms like (12).
Theorem 1: [10], [9] Consider a twice-differentiable func-

tion J(ρ) : Rn → R+. If the optimization problem is uncon-
strained, the estimate of the gradient is uniformly bounded and
the step size γi of the steepest descent algorithm respects the
following conditions:

∞
∑

i=1

γi = ∞
∞
∑

i=1

γ2
i < ∞

then
lim
i→∞

ρi = {ρ : ∇J(ρ) = 0}.

A “classical” choice of the step sizes, which satisfies these
conditions, is the harmonic series [10], [11]:

γi =
γ1
i
; i > 1. (13)

This step sequence choice is theoretically justified, and as
such is often presented as a benchmark, although it tends to
provide poor convergence rates and it leaves open the issue of
how to chose the first step size γ1. Moreover, this result only
ensures that the algorithm will converge to a stationary point
of the cost function - we cannot ensure that this will be the
global minimum.
A major concern in optimization, and particularly in the H2

control design formulation, is the convergence to the global
minimum of the performance criterion. This can rarely be
achieved globally, that is, regardless of the initialization of
the algorithm, so we define the following.
Definition 1: A set Ω ⊂ Rn is a domain of attraction (DOA)

of an algorithm ρi+1 = f(ρi) for the function Jy(ρ) (8) if
limi→∞ ρi = ρd, ∀ρ0 ∈ Ω.
The algorithm can only converge to the global minimum if

the parameters are inside the domain of attraction. Therefore,
to ensure convergence, it is necessary to check if the parame-
ters are inside this set. It is also necessary to choose the step
size sequence properly, in order to have a good convergence
rate. In the next section we will present the main results of
this work: a test to verify if the algorithm is converging to
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the global minimum and a step size policy to ensure a high
convergence rate.

IV. MAIN RESULTS
In this section, relevant properties of the steepest descent

algorithm are explored to design a step size sequence with
high convergence rate and the test to verify if the algorithm is
converging to the global minimum. The next theorem presents
the main result of this work.
Theorem 2: [1] Consider a twice-differentiable function

Jy(·) : Rn → R+. Assume that this function has an isolated
global minimum ρd, and that Assumptions 1 and 2 are
satisfied. Define

γmax
i = max

γi

γi subject to (14)

γi > 0

γiM
T (ρi)M(ρi)− 2Ms(ρi) < 0

where M(ρi) and Ms(ρi) are defined in (11). If at each
iteration the step size of the steepest descent algorithm satisfies

γi < γmax
i (15)

then the algorithm (12) with Ri = I converges to the global
minimum ρd.

Proof: Let V (ρ) = (ρ − ρd)T (ρ − ρd) be a Lyapunov
function for the discrete-time system (12) with Ri = I . Then
the set

Bα(ρd) =
{

ρ : (ρ− ρd)
T (ρ− ρd) < α

}

.

is a domain of attraction if the Lyapunov function V (ρ) is
strictly decreasing in time, that is, if

V (ρi+1)− V (ρi) < 0; ∀ρi ∈ Bα(ρd), ρi ̸= ρd (16)

Replacing (12) into (16) with Ri = I we have

V (ρi+1)− V (ρi) =

(ρi − γi∇Jy(ρi)− ρd)
T (ρi − γi∇Jy(ρi)− ρd)

−(ρi − ρd)
T (ρi − ρd) = −2γi(ρi − ρd)

T∇Jy(ρi)

+γ2
i∇JT

y (ρi)∇Jy(ρi) < 0

which is ensured if

0 < γi < 2
(ρi − ρd)T∇Jy(ρi)

∇JT
y (ρi)∇Jy(ρi)

. (17)

Replacing (11a) in (17) we get:

γi < 2
(ρi − ρd)TM(ρi)(ρi − ρd)

(ρi − ρd)TMT (ρi)M(ρi)(ρi − ρd)

Now, Ma(ρ) is an anti-symmetric matrix, so the above
expression can be simplified to

γi < 2
(ρi − ρd)TMs(ρi)(ρi − ρd)

(ρi − ρd)TMT (ρi)M(ρi)(ρi − ρd)

which is equivalent to

(ρi − ρd)
T (γiM

T (ρi)M(ρi)− 2Ms(ρi))(ρi − ρd) < 0

which is quadratic and is satisfied by the conditions of the
theorem.

Recall that any connected and bounded level set of a
Lyapunov function is a domain of attraction if the Lyapunov
difference is strictly negative in its interior. Then the proof is
completed by noting that Bα(ρd) is a connected and bounded
level set of the Lyapunov function V (ρ).
The theorem ensures that the steepest descent algorithm

converges to the global minimum if the step size respects
the conditions of the theorem. If the step size is smaller than
γmax
i , then at each iteration the parameters of the controller are
closer to the global minimum ρd, because V (ρi+1) < V (ρi).
Any value of the step size that respects 0 < γi < γmax

i can
be used to ensure convergence, however some values make
the convergence rate higher. Someone could think that the
larger step size possible should be used, but this is not always
the best option. As we can see in Figure 1, sometimes the
larger step size puts the next parameter ρi+1 further from the
global minimum ρd than smaller step sizes. This can happen
because the rule (15) only ensures that the next iteration will
be in a ball (centered in ρd) with smaller radius. From the
authors experience, most of the times the use γi = γmax

i /2
generates very high convergence rates, but any value between
γmax
i /2 and γmax

i can be used as well. It would be necessary
to know the parameter ρd to compute exactly the step size that
generates the higher convergence rate, however we assume that
it is unknown. On the other hand, it is necessary to have an
estimate of M(ρ) to compute γmax

i , an aspect that will be
discussed later.

Fig. 1. Choice of the step size: ρ1i+1 obtained with γi = γmax
i /2 and ρ2i+1

obtained with γi = γmax
i .

A. The convergence test

Every time the step size is computed using (15), this cal-
culation indicates whether or not the algorithm is converging
to the global minimum. Indeed, if the problem (14) has a
feasible solution, then we know that the algorithm is pointing
to the right a direction, such that the parameters of the next
iteration are going to be closer to the global minimum than
the actual parameters. It can also happen that the problem (14)
doesn’t have solution, which means that the algorithm will be
pointing to the wrong direction in the parameter space - that
is, away from the global minimum. So, the procedure used for
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the calculation of the step size also serves as a test to verify
if the algorithm is converging to the global minimum.
The problem (14) doesn’t have solution if the parameters of

the algorithm are outside the candidate domain of attraction.
In this case the matrix Ms(ρ) is not positive definite and the
steepest descent algorithm can not converge to the global min-
imum. Every time that the optimization problem is infeasible
some action must be taken. Whenever such situation occurs,
one can resort to the Cost Function Shaping methodology [1].
The Cost Function Shaping makes use of the variables that
the designer has at his disposal (mainly the reference spectrum
and the reference model) to shape the cost function such that it
becomes well-behaved as desired. It has been shown, among
other things, that it is always possible to manipulate these
variables such that any given (stabilizing) controller be inside
the candidate domain of attraction. However, this is not in the
scope of this article. The combination of proposed step sizes
and cost function shaping makes it possible to converge to the
global minimum from any stabilizing) controller.

B. Estimate of M(ρ)

The computation of γmax
i requires an estimate of M(ρ), a

matrix which is given by:

M(ρ) =
1

π

∫ π

−π

Φr(e
jω)

∣

∣G(ejω)S(ejω , ρ)
∣

∣

2 × (18)

ℜ
{

S∗

d(e
jω)S(ejω, ρ)C̄(ejω)C̄∗(ejω)

}

dω

It is observed that this matrix depends on the reference
signal, on the controller, on the reference model and on
the frequency response of the process. The reference signal,
the controller and the reference model are data known by
the designer. The only information unknown concerns the
frequency response of the process. If a precise model of the
process were available, it would be possible to compute the
controller using (10), and the data-based methods would be
useless.
On the other hand, if nothing is known about the process,

then it is impossible to choose appropriately the reference
model and complexity of the controller. At least some very
basic information about the process must be available in order
to set up a data-based control design, and in most of the cases
this basic information about the process is indeed available a
priori, such as approximations of the dominant time constant,
the static gain and the delay. These informations can be used
to obtain a rough model of the process, which can serve the
purpose of estimating the matrix M(ρ) using equation (18).
The model does not need to be precise to the method ensure

convergence because it is not used to compute the gradient
direction, which is done based solely on input-output the
data, but only to determine the step sizes. If an error on the
model makes the step size smaller than it should be, then the
convergence is still achieved, but the convergence rate will be
lower than expected. On the other hand, if an error on the
model makes the step size larger, then it could in principle
happen that the algorithm will leave the domain of attraction
of the global minimum, but the step size used is half the one
that would cause this problem, but there is quite a large margin
for error here.

V. CASE STUDIES

In this section we present simulationand experimental re-
sults that illustrate the effectiveness of the step size policy
proposed.

A. Simulation result - first example
The following case study illustrates the large improvements

that can be obtained with the step size sequence proposed
when compared to a benchmark, as well as the dangers of
using the Newton-Raphson algorithm, which is potentially
much faster.
Consider the following system

y(t) =
0.05

z − 0.95
u(t). (19)

This system is controlled by a PI controller

C(z, ρ) =
[

kp ki
] [

1 z
z−1

]T
. (20)

The following reference model is specified:

yd(t) =
0.1

z − 0.9
r(t). (21)

From (10) it follows that

Cd(z) =
[

1.9 .1
] [

1 z
z−1

]T
. (22)

This controller lies in the class of PI controllers in the form
(20), so Assumption 2 is satisfied.
We consider that the system is initially in closed-loop with

the controller

C(z, ρ) =
[

1 2
] [

1 z
z−1

]T
. (23)
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Fig. 2. Closed-loop step response: desired response, achieved response with
the initial controller, and with the final controller.

Figure 2 shows the step response of the closed-loop system.
Note that the initial response is very different from the desired
one. We want now to improve the closed-loop performance
utilizing the algorithm (12). We then use the algorithm (12)
where ∇J(ρ) is substituted by the estimate based on data ob-
tained from the Iterative Feedback Tuning (IFT) method. The
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following reference signal, which is conceived to guarantee
persistence of excitation, is used to obtain the data:

r(t) = square

(

2πt

200

)

.

where square
(

2πt
T

)

stands for a square wave with period T .
The period of the reference is larger than the settling time of
the process, so the reference can be viewed as a sequence of
step signals. 1000 samples of the above signal were used to
compute the estimates.
Figure 3 shows the evolution of the controller parameters

for 15 iterations using the proposed sequence of step sizes and
the “classical” choice of the step sizes (13). The first step size
of the classical step sizes sequence was chosen to be the same
as the one in the proposed approach.
Table I shows the cost J(ρi) at each iteration. By using the

“classical” steps, after 15 iterations the cost is still 0.22753,
whereas with the proposed step size sequence at iteration 15
the cost is 0.00080, indicating that the closed-loop response
is very close to the desired response. Figure 2 also shows the
step response with the final controller (iteration 15) of the
proposed step size sequence.
After iteration 15 the cost has already achieved a very small

value, so the convergence rate becomes also small, which
suggests the application of the Newton-Raphson iterations
from this point on. The application of this scheme results in
the convergence presented in Figure 4 and Table II. We can
see that in this configuration the algorithm achieves the global
minimum within a few iterations, which strongly suggest this
combination of Newton-Raphson and steepest descent with
our proposed step size sequence followed by Newton-Raphson
iterations.
From these results one may be tempted to apply the Newton-

Raphson algorithm from the very beginning, discarding the
steepest descent all along; it turns out that this is not a good
idea because the Newton-Raphson method typically presents
a smaller domain of attraction than the steepest descent [18],
which implies that the Newton-Raphson method requires a
better initialization (that is, closer to the minimum) in order to
perform adequately. Also, the Newton-Raphson is more costly,
because it requires estimating the Hessian and the gradient
of the cost function, whereas the steepest descent algorithm
requires only the gradient. Figure 5 and Table III show the
result of applying the N-R method to the initial condition (23).
In this case, because the initial condition is far from the global
minimum the Newton-Raphson method diverges until arriving
at an unstable closed-loop at iteration 4.

TABLE II
CONTROLLER PARAMETERS EVOLUTION - NEWTON-RAPHSON METHOD

INITIALIZED WITH STEP 15 OF TABLE I.

i J(ρi) [ kp ki ]
1 0.00080687 [2.1750 0.0999]
2 3.8667e− 06 [1.8828 0.1002]
3 6.0009e− 11 [1.8999 0.1000]
4 0.0000 [1.9000 0.1000]

Another possibility is to modify the Newton-Raphson
method to allow a variable step size. Several articles suggest
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Fig. 3. Controller parameters: evolution with the proposed and classical step
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TABLE III
CONTROLLER PARAMETERS EVOLUTION - NEWTON-RAPHSON METHOD.

i J(ρ) [ kp ki ]
1 0.28958 [1.0000 2.0000]
2 0.20295 [2.8159 1.8053]
3 0.14209 [5.9171 1.1141]
4 ∞ [8.3799 −1.4947]
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TABLE I
CONTROLLER PARAMETERS EVOLUTION - STEEPEST DESCENT.

Proposed Step Size Classical Step Size
i J(ρi) [ kp ki ] J(ρi) [ kp ki ]
1 0.28958 [1.0000 2.0000] 0.28958 [1.0000 2.0000]
2 0.26532 [1.2523 1.8654] 0.26532 [1.2523 1.8654]
3 0.24700 [1.4635 1.7396] 0.25639 [1.3532 1.8053]
4 0.22948 [1.6509 1.5865] 0.25082 [1.4153 1.7629]
5 0.21028 [1.8186 1.3899] 0.24674 [1.4596 1.7293]
6 0.18819 [1.9596 1.1568] 0.24350 [1.4938 1.7011]
7 0.16067 [2.0650 0.9030] 0.24080 [1.5215 1.6767]
8 0.12162 [2.1353 0.6254] 0.23847 [1.5446 1.6551]
9 0.06691 [2.1697 0.3600] 0.23643 [1.5644 1.6357]
10 0.01251 [2.1779 0.1657] 0.23460 [1.5817 1.6179]
11 0.00087 [2.1774 0.1034] 0.23294 [1.5970 1.6016]
12 0.00081 [2.1768 0.0999] 0.23143 [1.6107 1.5865]
13 0.00081 [2.1762 0.0999] 0.23003 [1.6231 1.5725]
14 0.00081 [2.1756 0.0999] 0.22874 [1.6344 1.5593]
15 0.00080 [2.1750 0.0999] 0.22753 [1.6447 1.5469]

the use of the classical step size (13) rule with the Newton-
Raphson search direction given by the cost function’s Hessian.
Table IV shows the result of applying this variable steps
size Newton-Raphson algorithm to the present example. The
corresponding reduction of the step size makes the algorithm
more conservative, which tends to make convergence slower,
yet safer. The algorithm does not diverge, as it was seen before,
but after 30 iterations the parameters are still farther away from
the global minimum than what is achieved at iteration 15 with
the step size proposed in this article, and the corresponding
value of the cost function is also significantly larger.

TABLE IV
CONTROLLER PARAMETERS EVOLUTION - NEWTON-RAPHSON METHOD

WITH CLASSICAL STEP SIZE

i J(ρ) [ kp ki ]
1 0.2896 [1.0000 2.0000]
5 0.0819 [5.9890 0.3976]
10 0.0140 [3.2846 0.6603]
15 0.0058 [2.6905 0.7259]
20 0.0031 [2.4530 0.1078]
25 0.0020 [2.3253 0.1060]
30 0.0013 [2.2455 0.1049]

B. Simulation result - second example

This subsection presents an example in which Assumptions
1 and 2 are mildly violated, comparing the performance of
direct design and iterative design in this case. In this example
the output of the system is corrupted by white noise and the
structure of the controller does not permit a perfect match of
the desired closed loop.
Consider the flexible transmission system presented in [14]

as a benchmark for digital control design. The plant’s transfer
function is described by

G(z) =
0.28261z+ 0.50666

z4 − 1.41833z3 + 1.58939z2 − 1.31608z + 0.88642
.

(24)
This system is controlled by a linearly parametrized con-

troller

C(z, ρ) = [ρ0 ρ1 ρ2 ρ3 ρ4 ρ5]

[

z5

z5 − z4
z4

z5 − z4
z3

z5 − z4

z2

z5 − z4
z

z5 − z4
1

z5 − z4

]T

(25)

The following reference model is specified:

Td(t) =
(1− 0.6065)2

z(z − 0.6065)2
(26)

This reference model cannot be achieved with the proposed
controller structure; the controller is not flexible enough to
make the output of the closed loop system identically to the
desired output, even if there were no noise corrupting the data.
In [14], two controllers designed to this problem have been

presented. The first one was designed with the method VRFT
and its parameters are given by:

ρV RFT = [0.2383 − 0.3387 0.3261 − 0.2547

0.1991 − 0.02382]T (27)

The second one was designed with the method nonitereative
correlation based tuning:

ρnCbT = [0.2315 − 0.3286 0.3192 − 0.2610

0.2107 − 0.03225]T (28)

We have used the parameters of the controller obtained
with the VRFT ρV RFT as the initial condition for the method
Iterative Feedback Tuning in order to verify if the closed loop
performance could be improved using the proposed step size
policy.
The reference used was 511 samples of the PRBS signal,

and the noise level was chosen such that the signal-to-noise
ration was of order 10.
In order to compute the step sizes it is necessary to have an

estimate model of the system. The data from one closed loop
experiment was used to compute the following estimate to the
process using the least square estimate (LSE):

Ĝ(z) =
0.1017z3 + 0.2562z2 + 0.2908z + 0.2250

1.0000z4 − 0.6418z3 + 0.1544z2 − 0.0093z + 0.2951
(29)
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After 10 iterations the performance of the closed loop was
improved and the cost was reduced from 0.0243 to 0.0170, as
it can be seen in Table V.

TABLE V
CONTROLLER PARAMETERS EVOLUTION - STEEPEST DESCENT

INITIALIZED WITH VRFT CONTROLLER.

i J(ρi) ρTi γi
1 0.0243 [0.2383 -0.3387 0.3261 -0.2547 0.1991 -0.0238] 1.3042
2 0.0179 [0.3126 -0.5439 0.6092 -0.5505 0.4231 -0.1143] 1.5062
3 0.0169 [0.3325 -0.5995 0.7087 -0.6344 0.4561 -0.1104] 1.4732
4 0.0178 [0.3229 -0.5863 0.6972 -0.6321 0.4558 -0.1149] 1.4969
5 0.0180 [0.3251 -0.5906 0.6955 -0.6414 0.4774 -0.1250] 1.4760
6 0.0162 [0.3300 -0.6016 0.7189 -0.6552 0.4742 -0.1191] 1.4847
7 0.0171 [0.3332 -0.6017 0.7110 -0.6461 0.4710 -0.1178] 1.4851
8 0.0171 [0.3270 -0.5932 0.6995 -0.6414 0.4740 -0.1263] 1.5226
9 0.0185 [0.3137 -0.5647 0.6627 -0.5991 0.4349 -0.1057] 1.4419
10 0.0170 [0.3138 -0.5649 0.6682 -0.6040 0.4385 -0.1093] 1.4681

Table VI show the cost J(ρ) obtained with each one of the
methods and also present norm of the difference between the
desired and achieved closed loop.

TABLE VI
COMPARISON BETWEEN METHODS.

J(ρ) ∥Td(z)− T (z, ρ)∥
IFT 0.0170 0.0736
VRFT 0.0243 0.1077
nCbT 0.0233 0.1083

We can see in this example that proposed step size policy
can be used even when the system output is corrupted with
noise, and when the controller is not flexible enough to satisfy
the Assumption 2. Although the theoretical development in
this paper does not cover this case, and relies on Assumptions
1 and 2, the method has shown to be robust against mild
violations of these hypothesis. The direct methods - nCbT
and VRFT - also provide reasonable results in this case, but
the iterative design can further improve the performance with
respect to the best performance achievable with a direct design.
It is also worth mentioning that the model Ĝ(z) used to

compute the step sizes is by no means a precise one. If
we compute a model-based controller using (10) with the
model Ĝ(z), we obtain a controller that makes the closed loop
unstable.

C. Experimental results
This section shows experiments that verify the theoretical

results presented previously. The experimental objective is to
control the temperature of a process. A resistance is used to
heat the system and a thermocouple sensor is used to measure
the temperature. We would like to control this process with
zero steady-state error for constant references, which is a
typical industrial specification.
The quality of the controller can be measured utilizing the

following estimate of the cost function

Ĵ(ρ) =
1

N

N
∑

t=1

(y(t, ρ)− yd(t))
2

where N is the number of samples utilized to compute the
estimate. We chose to utilize the following quality criterion,

TABLE VII
PARAMETERS EVOLUTION.

i [kp ki kd] J̄(ρ)
1 [0.60000 0.10000 0.90000] 3.99
2 [0.68351 0.02539 0.87074] 0.96
3 [0.69349 0.01549 0.86740] 0.74
4 [0.69021 0.01883 0.86848] 0.63

because it has a physical meaning, namely the average error
per sample, in units of the process output (degree Celsius):

J̄(ρ) =
√

Ĵ(ρ).

The reference model chosen is

Td(z) =
0.1

z − 0.9
.

The closed-loop system is running initially with the con-
troller:

C(z, ρ1) = [0.6 0.1 0.9]
[

1 z
z−1

z−1
z

]T
.

The closed-loop system with this controller has an unsatisfac-
tory behavior, as can be seen by the resulting high cost value
J̄(ρ1) = 3.99 oC. This means that in average, the response is
3.99 oC different from what is desired at each sample, which
represents almost 20% of the amplitude of the reference step.
The system response is shown in Figure 6.
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Fig. 6. Reference model and step response with C(z, ρ1) and C(z, ρ4).

Let us now apply Iterative Feedback Tuning and the step
size sequence computed as previously presented. The reference
signal utilized to run the experiments to collect the input-
output data was

r(t) = 80 + 10square

(

2πt

64

)

.

Again this reference was conceived to guarantee persistence
of excitation and its period is larger than the settling time of
the process, so the reference can be viewed as a sequence of
step signals.
With the controller C(z, ρ1), the cost value was J̌(ρ1) =

3.99 oC. After 4 iterations, the cost value was reduced to
J̌(ρ4) = 0.63 oC, 6 times smaller than the initial cost value.
The evolution of the parameters is shown in the Table VII.
The controller achieved at the 4th iteration is given by

C(z, ρ4) = [0.69021 0.01883 0.86848]
[

1 z
z−1

z−1
z

]T
.
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The step closed-loop response with the controller C(z, ρ4) is
also shown in the Figure 6.
But how good is this performance in absolute terms, that

is, how close to the global optimum have we arrived? We
have tested several controller parameters obtained with many
different methods. The best controller that was ever achieved
is

C(z, ρd) = [0.675 0.020 0.793]
[

1 z
z−1

z−1
z

]T
.

The cost of the closed-loop system with the controller
C(z, ρd), to a step reference signal of 20 oC, is measured
as J̌(ρd) = 0.22 oC.

VI. CONCLUSION
Previous publications tend to resort to ad hoc solutions

to choose the step sizes in the steepest descent algorithm
when tuning the parameters of a controller through data-based
methods. We have given a systematic procedure to compute
these step sizes. Assuming that the initial condition is inside
the candidate domain of attraction of the global minimum of
the performance criterion, this step size policy ensures that
the algorithm converges to this global minimum. Also, at each
iteration the calculation informs us whether or not the algo-
rithm is converging to the global optimum. In the examples
given, which include experimental results, convergence speed
is radically improved when compared to a classical systematic
choice of the step size that is often given as a benchmark.
The examples also illustrate the role of the Newton-Raphson
algorithm, which we recommend to use in combination with
the steepest descent, but not by itself, and that the proposed
method can still be applied if some assumptions of the method
are slightly violated. Indeed, even if there is noise corrupting
the data and/or the Assumption 2 is not satisfied the method
still performs as appropriately; however, the implication of
these violations is a topic deserving further research effort.
The practical experiments also indicate that the method can
be easily applied in a practical way.
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