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Abstract

The Prediction Error Method (PEM) is related to an optimization problem built on input/output data collected from the
system to be identified. It is often hard to find the global solution of this optimization problem because the corresponding
objective function presents local minima and/or the search space is constrained to a nonconvex set. The shape of the cost
function, and hence the difficulty in solving the optimization problem, depends directly on the experimental conditions, more
specifically on the spectrum of the input/output data collected from the system. Therefore, it seems plausible to improve the
convergence to the global minimum by properly choosing the spectrum of the input; in this paper, we address this problem. We
present a condition for convergence to the global minimum of the cost function and propose its inclusion in the input design.
We present the application of the proposed approach to case studies where the algorithms tend to get trapped in nonglobal
minima.
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1 Introduction

The Prediction Error Method (PEM) for parameter
identification uses input-output data collected from the
process to form a cost function. The parameters are
then estimated as the solution of the optimization of
this cost function. Under mild assumptions, the global
minimum of the cost function is a consistent estimate
of the model parameters, and the asymptotic variance
equals the limit of the Cramér-Rao Bound. Therefore,
identification by means of PEM provides a consistent
and otherwise statistically appealing estimate of the
system parameters and transfer function, provided that
the global minimum of the cost function is obtained by
the optimization procedure [22].

One difficulty in applying the PEM method is that in
many cases achieving the global minimum may prove
difficult [24, 38], for two main reasons: the cost function
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is usually not convex and the problem is constrained to
a nonconvex set - namely, the set of parameters which
yield stable predictors. Currently adopted solutions to
this problem consist mainly in searching for good initial
conditions to initialize the optimization, which is per-
formed with some standard algorithm - steepest descent,
Newton-Raphson, Levenberg-Marquardt, and the like. A
“good” initial condition is one that is close enough to the
global minimum to begin with, that is, closer to it than
any local maxima or minima that would prevent con-
vergence to the global minimum if they happened to be
in the optimization path. Although there seem to be no
firmly established guarantees that these solutions yield
the global minimum, they have been successfully applied
for many years. They are able to achieve the global min-
imum of the objective function in most cases, but failure
to do so is not such an uncommon occurrence either. As
the model order becomes larger, the trend to get trapped
in local minima or to “converge” to the boundary of the
search space, thus providing a useless model, seems to
grow; we provide a couple of such examples in this pa-
per. This problem has received renewed interest in the
past few years, as pointed out in [24], and different ap-
proaches have emerged to cope with it, such as the use
of resampling schemes to the input-output data [12] and
the approximation of the process model by (potentially
high order) linearly parameterized model structures to
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obtain convex cost functions [15] [19].

In this work, we present a different approach to the con-
vergence problem. We focus on the cost function itself
and its shape, trying to avoid the very existence of local
minima and maxima. If the cost function has a “good”
shape, meaning that it does not have local extrema other
than the global minimum or inflection points, then it
is easier for any gradient based optimization algorithm
to converge to the global minimum, even if initialized
far from the global minimum. We analyze what are the
conditions under which the cost function has a “good”
shape.We show that this property depends on the exper-
imental conditions, more specifically on the spectrum of
the input/output data collected from the system. There-
fore, it is possible to improve convergence to the global
minimum by properly choosing the spectrum of the in-
put signal.

As a next step, we apply this concept to experiment
design: we present the use of input design as a tool to
ensure that the cost function’s shape will be amenable
to optimization. Typically, input design is formulated
as an optimization problem on the input, where several
different constraints may be applied. These constraints
usually refer to the cost of the identification procedure
and/or the quality of the model obtained at the global
minimum of the cost function. We propose the addition
of a convergence constraint to the input design, aiming
to obtain an input spectrum such that the cost function
will not present local extrema within a given set, which
can be made as large as desired. In doing so, we will
improve the convergence of iterative algorithms to the
global minimum of the PE criterion.

The paper is organized as follows. Section 2 presents ba-
sic definitions and the problem formulation. Section 3
presents desired properties of the optimization problem.
Conditions about the convergence of the methods are
described in Section 4. Input design as a tool to improve
the convergence to the global minimum is shown in Sec-
tion 5. Section 6 presents case studies, and concluding
remarks are given in Section 7.

2 Problem formulation

We consider prediction error identification of a linear
time-invariant discrete-time single-input single-output
“true system”:

S : y(t) = G0(z)u(t) +H0(z)e(t) (1)

where G0(z) and H0(z) are the process transfer func-
tions, u(t) is the input and e(t) is white noise with vari-
ance σ2

e . Both transfer functions are rational and proper;
furthermore, H0(z) is monic, i.e. H0(∞) = 1. To be
precise, we shall define S ! [G0(z) H0(z)]. The signal

u(t) is assumed to be quasistationary [22]. We also as-
sume that the data is collected in open loop such that
Ē[u(t)e(s)] = 0 ∀t, s where

Ē[f(t)] ! lim
N→∞

1

N

N
∑

t=1

E[f(t)]

with E[·] denoting expectation [22].

In this paper we consider the identification of linearmod-
els

y(t) = G(z, θ)u(t) +H(z, θ)e(t) (2)

whereG(z, θ) andH(z, θ) are rational and proper trans-
fer functions and θ represents the parameters to be iden-

tified. The set M ∆
= {[G(z, θ) H(z, θ)] , ∀θ ∈ Dθ} is

called the model set. The search spaceDθ is usually con-
strained to be such that the predictors are BIBO-stable
∀θ ∈ Dθ.

We assume that the numerator and denominator of the
model are affine functions of the unknown parameters,
so that the transfer functions G(z, θ) and H(z, θ) have
the structure

G(z, θ) =
BT (z)θ

1 + FT (z)θ
, H(z, θ) =

1 + CT (z)θ

1 +DT (z)θ
, (3)

where the vectors B(z), C(z), D(z), F (z) ∈ Rn are com-
posed of fixed transfer functions and θ ∈ Rn corre-
sponds to the unknown parameter vector of the model.
This structure is more general than the structures used
in [14, 36, 37] and encompasses all the classical model
structures: Box-Jenkins, Output Error (OE), ARMAX,
ARX.

We also consider that the system being identified can be
exactly described within the model class considered, as
formalized by the following assumption.

Assumption 1 S ∈ M.

The real system S belongs to the model setM, i.e. ∃ θ0 ∈
Dθ such that

G(z, θ0) = G0(z) and H(z, θ0) = H0(z).

⋄

Prediction error identification based on N input-output
data consists in finding, among all the models in the
pre-specified model set, one that provides the minimum
value for the prediction error criterion, that is, one that
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solves the following optimization

θ̂N = argmin
θ

VN (θ) (4)

VN (θ) =
1

N

N
∑

t=1

[ŷ(t, θ)− y(t)]2 (5)

where the optimal one-step-ahead predictor is given by

ŷ(t, θ) =H−1(z, θ)G(z, θ)u(t) + (1−H−1(z, θ))y(t) (6)

PEM has the property [22] that under mild conditions
the parameter estimate θ̂N converges w.p.1, forN → ∞,
to a set

Θ∗ = {θ∗ ! arg min
θ∈Dθ

V (θ)}, (7)

with
V (θ) ! Ē[y(t)− ŷ(t, θ)]2. (8)

If S ∈ M, then θ0 ∈ Θ∗. Moreover, under appropriate
conditions the cardinality of the set Θ∗ is one, that is,
θ0 is the unique global minimum of V (θ). Necessary and
sufficient conditions for uniqueness of the global mini-
mum are local identifiability of the model structure and
local informativity of the experiment, as shown recently
in [4]. Under these conditions, the parameter error con-
verges to a Gaussian random variable:

√
N(θ̂N − θ0)

N→∞−→ N (0, Pθ0), (9)

where

Pθ0 =

⎛

⎝

1

σ2
e

Ē

⎡

⎣

(

∂ŷ(t, θ)

∂θ

∣

∣

∣

∣

θ=θ0

)(

∂ŷ(t, θ)

∂θ

∣

∣

∣

∣

θ=θ0

)T
⎤

⎦

⎞

⎠

−1

.

In this paper, we study the properties of the optimiza-
tion problem defined in (4), and approximate the prop-
erties of VN (θ) by those of V (θ), due to the uniform
convergence of the former to the latter [22, 33, 27]. This
approximation is very useful because VN (θ) is stochastic
and V (θ) is a deterministic function. By the application
of Parseval’s theorem this function can be written as:

V (θ) =
1

2π

∫ π

−π

∣

∣H−1(ejω , θ)H0(e
jω)
∣

∣

2
σ2
e

+
∣

∣H−1(ejω , θ)(G0(e
jω)−G(ejω , θ))

∣

∣

2
Φu(ω)dω

where Φu(ω) is the spectrum of the input signal u(t).

The solutions of the optimization problems (4) and (7)
are the points in the search spaceDθ which minimize the
respective cost functions, and we will henceforth refer to
as the global minimum; see the following definition.

Definition 1 The solution θ∗ (resp. θ̂N ) of the optimiza-
tion problem (7) (resp. (4)) is called a global minimum
of the function V (θ) (resp. VN (θ)). A point θ+ is called a
local minimum if it is not a global minimum and ∃δ > 0
such that V (θ) ≥ V (θ+) ∀θ : ∥θ − θ+∥ < δ, θ ̸= θ+. (or
equivalently for VN (θ)). ⋄

When a cost function presents local minima, there is a
risk that local search methods converge to such points.
Even if there are no localminimawithin the search space,
it is often the case that the cost function decreases to-
wards the boundary of the search space Dθ, possibly
leading to “convergence” to this boundary. The statis-
tical properties asserted previously are valid only for
the global minimum θ̂N , so whenever this happens, the
whole analysis above does not hold, because the identi-
fication procedure failed to yield θ̂N as its result.

In this paper, we analyze the shape of the cost function
V (θ), assuming that N is large enough so that VN (θ)
inherits these properties. We will show that this shape is
determined by the spectrum of the input signal, and thus
propose to apply input design as a tool to ensure that the
cost function V (θ) has the appropriate shape, therefore
facilitating the convergence to the global minimum.

3 Optimization properties

The optimization problem (7) usually does not have a
closed-form solution, so it is common to apply iterative
algorithms to solve it. These algorithms have the follow-
ing generic form:

θi+1 = f(θi) i = 1, 2, . . . ,∞.

As the iterations proceed, the algorithm may – and
should – converge to some point in Dθ; these points are
called limit points, defined formally below.

Definition 2 A point θ̄ ∈ Dθ is called a limit point of
an iterative algorithm if for some initial condition

θ̄ = lim
i→∞

θi.

A given algorithm can have – and usually has – differ-
ent limit points, corresponding to different initial con-
ditions. Most optimization algorithms are based on the
gradient of the cost function, and as a consequence have
all local minima as limit points (see Chapter 4 in [5]).
It is worth mentioning en passant that for some algo-
rithms, Newton-Raphson among them, even maxima are
limit points. Therefore, when the cost function presents
local minima, each one of these local minima will be a
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limit point of the algorithm for some initial conditions
and avoiding the highly undesirable convergence to one
such non-global minimum may be a very difficult task.
It is thus very relevant to determine, in any given identi-
fication problem, whether or not the cost function V (θ)
presents local minima. Although there is no definitive
answer to this problem in general, the literature has been
concerned with this issue for a long time and does pro-
vide the answer for some particular cases. The cost func-
tion V (θ) has no local minima in the following cases:

• for ARX models [22] or any linear parameterization
(which is standard textbook knowledge, since V (θ) is
quadratic in θ);

• for ARMA models [2];
• for Box-Jenkins models if the denominator of G(z) is
a first order polymonial [31];

• for Output Error (OE) models if the input signal is
white noise [32].

Examples of convergence to local minima can be found,
for instance, in [10, 14, 31]. The example in [31] is an OE
model where the input is colored noise. Let us give an
example of convergence to the boundary of the search
space.

Example 1 Consider the identification of the “real”
system

G0(z) =
0.033157

(z − 0.7)(z − 0.8)(z − 0.9)
H0(z) = 1

(10)
where the noise variance is σ2

e = 0.1.The following model
structure will be used:

G(z, θ) =
θ1

z3 + θ2z2 + θ3z + θ4
H0(z) = 1 (11)

where θ = [θ1 θ2 θ3 θ4]T , so that S ∈ M – Assumption
1 is satisfied. Data will be collected in an experiment
where the input u(t) consists of N = 1, 000 samples of
white noise with variance σ2

e = 1 and Dθ is the set of
parameters that yield stable predictors.

The present example fits in the last case listed above, since
the model is OE and the input signal is white noise, so we
know that there are no local minima. However, using the
command oe of the System Identification Toolbox from
MATLAB [23] we get the estimate:

θ̄ = [−0.0005708 1.5911 0.2946 − 0.36012]T ;

G(z, θ̄) =
−0.0005708

(z − 0.3607)(z2 + 1.952z + 0.9985)
.

which is clearly quite different from the real parameter
value θ0. Computing the poles of the resulting model, it is
seen that there is a complex pair whose module is 0.9992,
that is, the algorithm stopped very close to the border of

the search spaceDθ. Observe that, whether the algorithms
converge to the wrong parameters or not depends on the
realization of the noise; in this example the algorithms
converged to the wrong parameters in circa 10% of trials.

⋄

Most algorithms will converge to the global minimum if
their initial condition is close enough to it. A set of ini-
tial conditions for which the algorithm converges to the
global minimum is called a domain of attraction (DOA)
of the algorithm.

Definition 3 Assume θ∗ to be the unique global mini-
mum of the function V (θ) : Rn → R+. A set Ω ⊂ Rn is
a domain of attraction of an algorithm if limi→∞ θi = θ∗

∀θ1 ∈ Ω.

A “good” initialization for an algorithm will be one that
is inside a DOA, which will happen if the initial condi-
tion is sufficiently close to the global minimum. Differ-
ent methods for the choice of “good” initial conditions
are proposed in the literature, and current commercial
identification software packages usually incorporate such
methods. The System Identification Toolbox for Mat-
lab uses initial conditions, e.g., based on instrumental
variables identification and the University of Newcastle
Identification Toolbox [26] applies the Steiglitz-McBride
method to this end [34].

An alternative approach, which is what we propose in
this paper, is to make the DOA as large as possible,
similarly to what has been proposed for controller tuning
in [6, 5]. Instead of, or in addition to, looking for a “good”
initial condition, we will try to obtain a large DOA. The
DOA depends on the algorithm and on the shape of
the cost function V (θ), so to enlarge the DOA one can
modify the cost function or/and the algorithm. We will
explore in this article how the shape of the cost function
affects the DOA and how one can design the experiment
to enlarge this set. An important concept related to the
shape of the cost function is called Candidate Domain of
Attraction (CDOA), also known asDecreasing Euclidean
Parameter Error Norm (DEPEN) region [14, 36], which
is defined next.

Definition 4 Let θ∗ be the global minimum of the func-
tion V (θ). A set Λ is a Candidate Domain of Attraction
for the function V (θ) if

(θ − θ∗)T∇V (θ) > 0 ∀θ ∈ Λ, θ ̸= θ∗. (12)

⋄

A nice property of a CDOA is that the gradient of the
cost function ∇V (θ) is zero only at the global minimum
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- there are no local minima or maxima inside it. The
most relevant property of a CDOA is that the angle α
between ∇V (θ) and the vector (θ − θ∗) is smaller than
π
2
rad for all θ inside the set, as illustrated in Fig. 1.

Fig. 1. Angle between ∇V (θ) and (θ − θ∗) .

As a consequence, for all θ inside the CDOA, a suffi-
ciently prudent step in the negative gradient direction of
the cost function takes θ closer (in a Euclidean sense) to
the global minimum θ∗. Since most algorithms are based
on the gradient of the cost function, if the initial con-
dition is inside the CDOA then it is easier to converge
to the global minimum, because the negative gradient is
always pointing towards the global minimum, and never
away from it. One of the most used iterative algorithms
is the steepest descent method, for which we can prove
the convergence, as seen in the following lemma.

Lemma 3.1 [5] Let θ∗ be the global minimum of the cost
function V (θ) and let B(θ∗), defined as

B(θ∗) =
{

θ : (θ − θ∗)T (θ − θ∗) < β
}

,

be a Candidate Domain of Attraction.

Then the set B(θ∗) is a Domain of Attraction of the steep-
est descent algorithm

θi+1 = θi − γi∇V (θi) (13)

provided that

0 < γi <
2(θi − θ∗)T∇V (θi)

∇V T (θi)∇V (θi)
. (14)

⋄

The lemma shows that if the steepest descent algorithm
is used with appropriate step sizes - that is, respecting
(14) - then any ball that is a Candidate DOA will be also
a DOA. Similar results can be obtained for other gradi-
ent based optimization algorithms, such as the Newton-
Raphson, and the robustness of this convergence prop-
erty to numerical imprecisions in the algorithm’s imple-
mentation has also been established [11, 5]. Therefore,
it is fair to say that larger Candidate DOAs result in

larger DOAs, as a generic property for gradient based
algorithms, hence the relevance of the CDOA concept.

4 Convergence Condition

In this section we will explore the properties of the
CDOAs to obtain a condition which ensures that a given
set is a CDOA.

Theorem 1 Consider that the model has the structure
(3) and that S ∈ M. A set Λ ∋ θ0 is a CDOA if and only
if:

1

π

∫ π

−π

Φu(ω)
∣

∣H−1(ejω, θ)(G0(e
jω)−G(ejω , θ))

∣

∣

2

·ℜ
{

1 + CT (ejω)θ0
1 + CT (ejω)θ

+
1 + FT (ejω)θ0
1 + FT (ejω)θ

− 1 +DT (ejω)θ0
1 +DT (ejω)θ

}

+ σ2
e

∣

∣H0(e
jω)(H−1(ejω , θ)−H−1

0 (ejω))
∣

∣

2

· ℜ
{

1 + CT (ejω)θ0
1 + CT (ejω)θ

}

dω > 0 (15)

for all θ ∈ Λ, such that θ ̸= θ0. In the expression, ℜ {·}
is the real part of a complex number.

Proof. Let us first compute the gradient of the cost
function V (θ) with respect to θ:

∇V (θ) =
1

π

∫ π

−π

Φuℜ
{

[

H−1(θ) (G0 −G(θ))
]∗

·
[

∇H−1(θ) (G0 −G(θ)) −H−1(θ)∇G(θ)
]}

+ σ2
eℜ
{

(

H0(H
−1(θ) −H−1

0 )
)∗

H0∇H−1(θ)
}

dω

where the dependence on the variable ω was omitted to
improve readability. Using the structure of the model,
we have that

∇G(z, θ) =
B(z)

1 + FT (z)θ
− BT (z)θF (z)

(1 + FT (z)θ)2

∇H−1(z, θ) =
D(z)

1 + CT (z)θ
− (1 +DT (z)θ)C(z)

(1 + CT (z)θ)2
.

The gradient of the cost function can be written as

5



∇V (θ) =
1
π

∫

π

−π

Φuℜ

{[(

1 +DT θ

1 + CT θ

)(

G0 −
BT θ

1 + F T θ

)]∗

·

[(

D

1 + CT θ
−

(1 +DT θ)C
(1 +CT θ)2

)(

G0 −
BT θ

1 + F T θ

)

−

(

1 +DT θ

1 + CT θ

)(

B

1 + F T θ
−

BT θF

(1 + F T θ)2

)]}

+σ2

eℜ

{

(

H0(H
−1(θ)−H−1

0 )
)

∗

H0

(

D

1 + CT θ
−

(1 +DT θ)C
(1 + CT θ)2

)}

dω.

(16)

Using the assumption S ∈ M in (16) where G0(z) =
G(z, θ0) and H0(z) = H(z, θ0), and reorganizing the
terms, we can write

(θ − θ0)
T∇V (θ) =

1

π

∫ π

−π

Φu

∣

∣H−1(θ)(G0 −G(θ))
∣

∣

2

· ℜ
{

1 + CT θ0
1 + CT θ

+
1 + FT θ0
1 + FT θ

− 1 +DT θ0
1 +DT θ

}

+ σ2
e

∣

∣H0(H
−1(θ) −H−1

0 )
∣

∣

2 ℜ
{

1 + CT θ0
1 + CT θ

}

dω

Using the condition of the theorem we ensure that

(θ − θ0)
T∇V (θ) > 0, ∀θ ∈ Λ, θ ̸= θ0.

which concludes that the set Λ is a CDOA. ✷

Condition (15) in Theorem 1 expresses the relation be-
tween a Candidate DOA and the fundamental elements
that are involved in the identification: the transfer func-
tions of the system G0 and H0, the model structure
G(z, θ) andH(z, θ), the input spectrumΦu and the vari-
ance of the noise σe. Among these elements that deter-
mine whether or not a given set is a Candidate DOA, the
only one that the user can manipulate in order to shape
the CDOA is the input spectrum Φu. The next section
will present the design of the input spectrum with this
aim.

5 Input Design

Input Design consists in choosing the input spectrum to
be applied in the identification experiment. It is gener-
ally posed as an optimization problem [21]

min
Φu

criterion

s.t. constraints (17)

where several constraints may apply. It is usual to in-
clude criteria and constraints related to:

• the power of the input signal

1

2π

∫ π

−π

Φu(ω)dω < c

• the variance of the estimate, represented by the matrix
Pθ0 :
· A-optimality - trace(Pθ0) < c
· D-optimality - det(Pθ0) < c
· E-optimality - λmax(Pθ0) < c
· L-optimality - trace(WPθ0) < c

The above are classical optimality constraints criteria,
used since the early days of experiment design [25, 35].
More contemporary criteria, also aiming at more sophis-
ticated objectives, have appeared in the past 15 years
[16, 3, 17, 18, 20]. An active topic of research is how
to obtain useful models to design controllers, and it has
been called identification for control [16].

The optimization problem (17) is, in general, not convex
and infinite dimensional (since the entire input spectrum
is to be designed) [20]. However, it is possible in many
cases to parametrize the input spectrum and to describe
the constraints in such a way that the problem becomes
convex and finite dimensional. To do so, the input spec-
trum is parametrized as

Φu(ω) =
M
∑

k=1

ckβk(e
jω) (18)

where βk(ejω), k = 1, . . . ,M are pre-specified basis
functions and ck, k = 1, . . . ,M are the parameters to
be optimized. The use of a finitely parameterized input
spectrum is a standard procedure in input design, which
does not constitute a mayor limitation, since it is known
that a continuous spectrum can be arbitrarily well ap-
proximated by a finite linear combination of basis func-
tions such as βk(ejω) = e−jωk, k = 0, 1, 2, . . . ,M − 1.
Note that using this parametrization we have a finite
number M of parameters to be optimized. Fortunately,
using this parametrization of the input spectrum, sev-
eral constraints can be rewritten as convex ones, and the
optimization problem can be efficiently solved by numer-
ical solvers.

In this paper, we propose to impose an additional con-
dition on the experiment design aiming to improve the
convergence of the iterative algorithms to the globalmin-
imum of the criterion. The previous section has shown
that if the cost function has a large Candidate Domain
of Attraction, then it is easier for the algorithm to con-
verge. Hence, if the user could ensure that for a chosen
set Λ the condition (15) is respected, then she/he would
ensure the convergence for all initial condition inside this
set.
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The optimization problem (17) with the parametriza-
tion (18) and restriction (15) is convex, but it is infinite
dimensional because the condition (15) should be ver-
ified for all θ ∈ Λ, θ ̸= θ0. This kind of problem, that
has a finite number of optimisation variables and infi-
nite number of constraints, is called semi-infinite opti-
misation problem in the mathematical programming lit-
erature. It has been shown in [10] that this problem can
be tackled by using the S-procedure technique, though
with conservative results.

In [7], an innovative method called “scenario approach”
has been introduced to deal with semi-infinite convex
programming at a very general level. Since it is very diffi-
cult to deal with the constraint (15) for all θ ∈ Λ, θ ̸= θ0,
the method proposes that one should naively concen-
trate attention on just a few constraints on the set Λ.
The Scenario Approach [7, 9] technique proposes that Q
randomly generated values of θ ∈ Λ should be selected,
generating Q respective scenarios for (15) with these θ
to represent the original infinite dimensional set. The
number Q should be large, so that the set of the points
is sufficiently representative of the whole set Λ.

Specifically, condition (15) is replaced by

φ(θi) +
M
∑

k=1

ckψk(θi) > 0 i = 1, . . . , Q (19)

where

ψk(θ) =
1
π

∫

π

−π

βk
∣

∣H−1(θ)(G0 −G(θ))
∣

∣

2

·ℜ

{

1 + CT θ0

1 +CT θ
+

1 + F T θ0

1 + F T θ
−

1 +DT θ0

1 +DT θ

}

dω

φ(θ) = σ2

e

1
π

∫

π

−π

∣

∣H0(H
−1(θ)−H−1

0 )
∣

∣

2
ℜ

{

1 + CT θ0

1 +CT θ

}

dω

and θi is selected randomly such that θi ∈ Λ according
to a given probability distribution on Λ, which in this
paper we assume to be a uniform distribution.

The optimisation problem (17) with the restriction (19)
can be efficiently solved with a low computational cost if
the number Q is not too large. Observe that the number
of scenariosQ is very relevant: the largerQ is, the better
condition (19) represents condition (15). However, the
computational cost also is a function of Q. The works
[7, 9] present a method to design the number of scenarios
Q. This method will be described in the sequence.

Before that, we provide some key concepts of the scenario
approach:

• Condition (15) is infinite dimensional because it
should be verified for all θ ∈ Λ.

• Let us assume we could neglect a fraction of the set Λ
verifying condition (15). Let us define that the fraction
of the set that would be neglected has probability ϵ ∈
(0, 1).

• Observe that the Q scenarios are randomly selected,
and therefore there is an uncertainty related to con-
dition (19).

The article [9] describes the relation between the number
of scenarios Q and the probability that the constraint
(19) is verified for a fraction of Λ.

Lemma 5.1 [9] Select a violation parameter ϵ ∈ (0, 1)
and a confidence parameter β ∈ (0, 1). If (19) is satisfied
and

n−1
∑

i=0

(

Q

i

)

ϵi(1− ϵ)Q−i < β

then, with probability no smaller than 1 − β, condition
(15) is satisfied for all Λ neglecting a fraction of proba-
bility at most ϵ.

The above result relates the number of scenariosQ with
the probability that the condition will be satisfied to
the set Λ if we accept to neglect a fraction of the set
proportional to ϵ. This result can be used to design the
number of scenarios Q to be used with the input design.
For example, one can conclude, using the condition of
the lemma, that 1, 000 scenarios are enough to ensure
that the conditions will be verified to 98% of the set Λ
with 99.92% of confidence. An important observation is
that the number of scenariosQ is not very sensitive to β,
so we can select β to be such a small number as 10−10, in
practice zero, and still Q does not grow significantly [8].

The proposed input design procedure, like most ap-
proaches, relies on the knowledge of the true system.
This apparent contradiction can be solved in several
different ways. For example, it is possible to assume, as
prior knowledge, that the true parameter vector lies in
a known compact set, and formulate the input design
problem as a robust/worst case optimization problem
[30, 28]. Another possibility is to solve the input design
in an adaptive fashion, by re-designing the input signal
recursively, as more data becomes available [13, 29]. For
reasons of space, we will not address this alternative in
the present paper. However, in Section 6.2 we show, via
a case study, that the proposed approach can be based
on a preliminary, rough estimate of θ, due to the relative
insensitivity of the resulting optimal input to this prior
knowledge.

6 Case Studies

In this section we will present two case studies that
demonstrate how the method proposed in this article
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can be applied. The first case study presents a compari-
son between the input design with and without the con-
vergence constraints used to improve the convergence
of the optimisation algorithms to the global minimum
of the criterion. The second case study presents a more
realistic example where it is possible to observe the ro-
bustness of the method with respect to knowledge of the
system parameters.

6.1 Input design with and without convergence con-
straints

In this example we will compare the convergence when
the input signal is computed using input design with and
without convergence constraints.

Consider the true system described by

G0(z) =
−0.2073z−1

− 0.5083z−2 + 0.5564z−3 + 0.1592z−4

1− 3.125z−1 + 3.977z−2 − 2.382z−3 + 0.5677z−4

H0(z) = 1, σ2
e = 20.

This model represents a power system consisting of two
synchronous generators connected to the power grid,
with data taken from [1]. The transfer function G0(z)
describes the relation between the field voltage applied
to the first generator and the angular speed of the same
generator at a given operating condition.

Let us identify a model to this real system with the Out-
put Error structure

G(z, θ) =
BT (z)θ

1 + FT (z)θ
H(z, θ) = 1

where

B(z) = [z−1 z−2 z−3 z−4 0 0 0 0 ]T ,

F (z) = [0 0 0 0 z−1 z−2 z−3 z−4]T .

The real system belongs to the model set defined by this
model structure, that is,G0(z) = G(z, θ0) with the “real
parameter” θ0 given by

θ0 = [−0.2073 − 0.5083 0.5564 0.1592

− 3.125 3.977 − 2.382 0.5677]T .

Before running the experiment, one should choose the
input signal to be applied to the process. This input sig-
nal will be generated by an experiment design procedure.
The number of samples used in the experiment will be

N = 1, 000. To do so, we need to choose a parametriza-
tion for the input spectrum. In this example, we will use
a discrete spectrum described by

Φ(ω) =
40
∑

k=1

ck (δ(ω − ωk) + δ(ω + ωk))

where

ωk = 10
(

2
(k−1)

40 −2
)

π.

Actually, we will design two different input spectra.
The first spectrum will be denoted Φ1(ω) and it will
be designed as the solution of the following standard
E-optimal input design problem:

max
c1,...,c40

λmin

(

P−1
θ0

)

s.t.
1

2π

∫ π

−π

Φu(ω)dω < 1. (20)

This optimization problem is convex and it is equivalent
to minimize the maximum eigenvalue of the covariance
matrix. The squares in Figure 2 are the solution of this
problem. The minimum eigenvalue of P−1

θ0
is 0.0044.

The second spectrum will be denoted Φ2(ω) and it will
be designed as the solution of the following problem:

max
c1,...,c40

λmin

(

P−1
θ0

)

s.t.
1

2π

∫ π

−π

Φu(ω)dω < 1, (21)

constraint (19). (22)

This optimization problem is convex and it is equivalent
to minimize the maximum eigenvalue of the covariance
matrix. The circles in Figure 2 are the solution of this
problem. The set Λ was chosen as

Λ =
{

θ : (θ − θ0)
T 103P−1

θ0
(Φ1)(θ − θ0) < χ2

8(95%)
}

so that it represents a confidence interval of 95% of the
identification procedure obtained with 103 samples of a
realization of Φ1(ω). The number of points inside Λ used
to compose the constraint isQ = 103 sampled uniformly
from Λ. Therefore, the scenario approach ensures that
with 99.92% of confidence the condition (15) is satisfied
for at least 98% of the set Λ.

This last problem can be formulated as a LMI as de-
scribed in Section 5, and the spectrum related to the so-
lution of this problem is also plotted in the Figure 2. The
solution of the problem is related to a covariance ma-
trix such that the minimum eigenvalue of P−1

θ0
is 0.0037.

Note that this minimum eigenvalue is smaller than the
value obtained with the first spectrum. The additional
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Fig. 2. Input spectra defined by the solution of the optimiza-
tion problems (20) and (21).

constraint in the problem forces a solution with larger
covariance matrix.

The parameter θ has been estimated using the Univer-
sity of Newcastle Identification Toolbox. For each input
signal, 100 Monte-Carlo runs have been performed, thus
providing 100 parameter estimates. The results of the
first signal are summarized in Figure 3 and 4.

In Figure 3 the ordinate axis presents the value of each
one of the eight elements of the parameter vector θ and
each abscissa corresponds to one Monte Carlo run. The
Monte-Carlo runs were re-ordered in terms of the small-
est θ. It is seen that after the 19th point of the plot, the
values are close to the real parameter value θ0, indicat-
ing that in these 82 runs the algorithm converged to the
global minimum of the cost function. However, in the
first 18 Monte Carlo runs, the values are close to another
point in the parameter space – far away from the real
value θ0 – indicating that the algorithm has yielded a
local (nonglobal) minimum of the cost function.

Figure 4 presents the Boxplot of the parameters where
the ordinate axis indicates the element of the parameter
vector and the abscissa presents the values obtained at
each Monte Carlo run. It is possible to see that the algo-
rithm did not convege to the global minimum for every
Monte-Carlo run.
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6

Monte−Carlo run

θ

Fig. 3. Parameters estimated at each Monte-Carlo run using
Φ1(ω). Each colour represent one parameter of the model.

In Figures 5 and 6 we present the same plots for the
second input signal, where it is seen that convergence to
the global minimum has been achieved at every run.
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Fig. 4. Boxplot of Monte-Carlo runs with Φ1(ω).
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Fig. 5. Parameters estimated at each Monte-Carlo run using
Φ2(ω). Each colour represent one parameter.
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Fig. 6. Boxplot of Monte-Carlo runs with Φ2(ω).

In order to further illustrate the results, let us also com-
pute, for each method, the mean value θm = 1

100

∑100

i=1 θ̂i

of the model parameters, where each θ̂i represents the
estimate obtained at the i− th Monte Carlo run.

θm(Φ1) = [−0.61811 −0.1173 −0.1005 −0.43944

− 2.691 3.323 − 2.083 0.63166]T

θm(Φ2) = [−0.20804 − 0.51126 0.56363 0.1546

− 3.1264 3.9807 − 2.3859 0.56916]T .

Comparing these values with the real parameter θ0 we
see that the estimate obtainedwith the proposedmethod
is, on average, much closer to the real parameter vector.

We have also computed the sample covariance ma-
trix resulting from the 100 Monte-Carlo runs: Pm =
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1
101

∑100

i=1(θ̂i − θm)(θ̂i − θm)T . When we have used the
input spectrum Φ2(ω) the minimum eigenvalue of the
P−1
m was 0.00412469, which is close to the theoretical

value 0.0037. However, when the spectrum Φ1(ω) was
used, the minimum eigenvalue of the P−1

m was computed
as 0.00015350, which is much smaller than the theoreti-
cal value 0.0044. As expected, the 18 Monte-Carlo runs
which do not converge to the global minimum make the
sample covariance much larger than expected (close to
30 times larger).

6.2 Robustness of the method

The input design uses in its formulations constraints re-
lated to the system parameters which are unknown to
the user. In order to design the input spectrum, it is nec-
essary to obtain an estimate to the system parameters
that will be used to compute the constraints of the input
design. In this section we will explore the robustness of
the proposed method to uncertainty on the system pa-
rameters. This example shows that the convergence con-
straints proposed in this article do not seem very sensi-
tive to uncertainty on the estimated model.

Consider the true system described by

G0(z) =
1

(1− 0.8z−1)(1− 0.85z−1)(1− 0.9z−1)

H0(z) = 1, σ2
e = 100.

Let us identify a model to this real system with the Out-
put Error structure

G(z, θ) =
BT (z)θ

1 + FT (z)θ
H(z, θ) = 1

where
B(z) = [1 0 0 0 0 ]T ,

F (z) = [0 z−1 z−2 z−3]T .

The real system belongs to the model set defined by this
model structure, that is,G0(z) = G(z, θ0) with the “real
parameter” θ0 given by

θ0 = [1 − 2.55 2.165 − 0.612]T .

Before performing the experiment design, let us use
white noise with unitary variance as input signal. We
have run 1, 000 Monte-Carlo experiments to observe the
convergence of the identification algorithms. We have
used the oe command of the System Identification Tool-
box to estimate the model parameters. Figure 7 presents
the same plot for the white noise input signal.

In Figure 7 the ordinate axis presents the value of each
one of the four elements of the parameter vector θ and
each abscissa corresponds to one Monte Carlo run. The
Monte-Carlo runs were re-ordered in terms of the small-
est θ. With the white noise input signal 118 runs do not
converg to the global minimum.
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Fig. 7. Parameters estimated at each Monte-Carlo run using
white noise as input spectrum. Each colour represent one
parameter of the model.

One of these Monte-Carlo runs was used to obtain a
model using the instrumental variable technique. The
following model was obtained:

GIV (z) =
1.1112

(1− 0.9906z−1)(1 − 1.379z−1 + 0.4928z−2)
.

The transfer function GIV (z) is just an rough approxi-
mation of G0(z), but it will be shown in the sequl that
this approximation is enough to design the input signal.
The Figure 8 shows the Bode Diagram of GIV (z) and
G0(z) for comparison. The step responses ofGIV (z) and
G0(z) are shown in Figure 9.
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Fig. 8. Bode plot of GIV (z) and G0(z)

The model GIV (z) will be used in the input design to
generate an input signal with 1, 000 samples. To do so,
we need firstly choose a parametrization for the input
spectrum. In this example, we will use a discrete spec-
trum described by

Φu(ω) =
40
∑

k=1

ck (δ(ω − ωk) + δ(ω + ωk))
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Fig. 9. Step response of GIV (z) and G0(z)

where

ωk = 10
(

2
(k−1)

40 −2
)

π.

The spectrum Φu(ω) will be designed as the solution of
the following problem:

max
c1,...,c40

λmin

(

P−1
θ0

)

s.t.
1

2π

∫ π

−π

Φu(ω)dω < 1. (23)

constraint (19) (24)

This optimization problem is convex and it is equivalent
to minimize the maximum eigenvalue of the covariance
matrix. The convergence constraint (19) was included
in this problem as proposed in this work. The set Λ was
chosen as

Λ =
{

θ : (θ − θ0)
T (θ − θ0) < 0.0001

}

so that it represents a ball with radius 0.01. The number
of points inside Λ used to compose the constraint is Q =
1, 000, where the points were sampled uniformly from
Λ. Therefore, the scenario approach ensures that with
99.92% of confidence the condition (15) is satisfied for
at least 98% of the set Λ.

This problem can be formulated as a LMI as described
in Section 5, and the spectrum related to the solution of
this problem is plotted in the Figure 10.
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Fig. 10. Spectrum.

Again, the System Identification Toolbox was used and
1000 Monte-Carlo runs were performed, thus providing

1000 parameter estimates. In Figure 11 the ordinate axis
presents the value of each one of the four elements of the
parameter vector θ and each abscissa corresponds to one
Monte Carlo run. The Monte-Carlo runs were re-ordered
in terms of the smallest θ. In 4 Monte Carlo runs the
values are close to another point in the parameter space
– far away from the real value θ0 – indicating that the
algorithm has yielded a local (nonglobal) minimum of
the cost function. All the other 996 runs the algorithm
converged to the global minimum of the criterion.
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Fig. 11. Parameters estimated at each Monte-Carlo run us-
ing designed input spectrum. Each colour represent one pa-
rameter of the model.

7 Conclusion

In this paper we proposed a solution to the problem of
convergence to “false minima” in identification through
the Prediction Error Method. This solution is based on
a sufficient condition for the convergence to the global
minimum of the Prediction Error cost function, a condi-
tion which has been given and demonstrated in the pa-
per. The spectra of the input signals are key factors in
this convergence condition, so our approach consists in
designing the spectra such that the convergence condi-
tion is respected. This can be accomplished by including
additional constraints in the input design problem, and
we have provided a way to include these constraints in
a convex manner. Case studies show that this approach
to shape the PEM cost function can be very effective in
guaranteeing convergence of the PEM to its global opti-
mum.
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