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Abstract

Identification of an output error model using the prediction error method leads to an optimization problem built on input/output
data collected from the system to be identified. It is often hard to find the global solution of this optimization problem because
in most cases both the corresponding objective function and the search space are nonconvex. The difficulty in solving the
optimization problem depends mainly on the experimental conditions, more specifically on the spectra of the input/output
data collected from the system. It is therefore possible to improve the convergence of the algorithms by properly choosing the
data prefilters; in this paper we show how to perform this choice. We present the application of the proposed approach to case
studies where the standard algorithms tend to fail to converge to the global minimum.
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1 Introduction

The prediction error method (PEM) uses input-output
data collected from the process to form a cost function
and then estimates the parameters by minimizing this
cost function. In this contribution we will consider iden-
tification of so called output error (OE) models using
PEM; this combination of model structure and identifi-
cation method is henceforth denoted OE-PEM. Under
mild assumptions, the global minimum of the cost func-
tion is a consistent estimate of the model parameters and
its asymptotic variance attains the Cramér-Rao Bound
when the output noise is white. Therefore, identification
by means of OE-PEM provides a consistent and other-
wise statistically appealing estimate of the system pa-
rameters and transfer function, provided that the global
minimum of the cost function is found by the optimiza-
tion procedure [13].

One difficulty in applying OE-PEM is that in many cases
achieving the global minimummay prove difficult due to
the nonconvexity of the cost function and of the search
space [15, 20, 22]. This problem can be mitigated, but
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not completely solved, by obtaining good initial guesses
for the parameters [16, 15]. Another approach, based on
input design, has been recently proposed [6, 10]. How-
ever, the method has two drawbacks, the design is based
on the process model which is unknown and it is neces-
sary to collect data using a specific input signal. In this
work we present another strategy, which consists in pre-
filtering the data so that the cost function presents desir-
able properties. Filtering reduces the signal energy and
hence the information content in the data, so we propose
the application of a sequence of filters such that conver-
gence to the global minimum is guaranteed and still all
the information contained in the data is extracted. The
method presented here is an extension of the conference
work [9], which now includes a proof of convergence of
the method, extra examples and better explanation of
the methodology.

The paper is organized as follows. Section 2 presents ba-
sic definitions and the problem formulation. The filtering
solution proposed in this paper is based on the proper-
ties of the cost function and the same theoretical back-
ground from [9], so only the main points of this theory
are reviewed in Section 3. The new algorithm, which is
based on shaping the cost function by sequentially pre-
filtering the data, is presented in Section 4. A case study
is given in Section 5, and some concluding remarks ap-
pear in Section 6.
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2 Preliminaries

Consider the identification of a linear time-invariant
discrete-time single-input single-output true system

y(t) = G0(q)u(t) + v(t),

v(t) = H0(q)e(t).
(1)

In (1), q is the forward-shift operator, y(t) is the output
signal and u(t) is the input signal.

We will consider the following output-error model struc-
ture:

y(t, θ) = G(q, θ)u(t) + ν(t) (2)

where ν(t) is assumed to be white noise and

G(q, θ) =
BT (q)θ

1 + FT (q)θ
(3)

and B(q), F (q) are vectors of given rational transfer
functions. The parameter vector θ is assumed to belong
to a set Θ, i.e. θ ∈ Θ ⊆ R

n. For every given θ ∈ Θ,
G(q, θ) is called amodel, and the collection of all models,
i.e.

G = {G(θ) : θ ∈ Θ}, (4)

is called the model set G.

The assumptions on the true system and the model are
given next.

Assumption 1 In (1), G0(q) and H0(q) are stable
proper transfer functions withH0 monic, i.e.H0(∞) = 1,
e(t) is a zero mean white noise sequence with variance σ2

e
and bounded moments up to order 4 + δ for some δ > 0.
The input signal is assumed to be a quasi-stationary sig-
nal [13], uncorrelated to the noise signal e(t), and whose
spectrum, Φu(ω), is strictly positive in [−π, π], implying
that it is persistently exciting of any order [13].

The model set G is a uniformly stable family of stable
rational transfer functions [13], with G(q, · ) ∈ C∞(Θ),
whereΘ ⊆ R

n is compact. We will also assume that there
is a parameter vector θ0 ∈ Θ such that the corresponding
model can describe precisely the process transfer function
G0(q), i.e.

G(q, θ0) = G0(q).

Furthermore, the model structureG is globally identifiable
at θ0 ∈ Θ.

In the approach we propose, the input and output sig-
nals are filtered by a Bounded-Input-Bounded-Output
(BIBO-stable) linear low pass filter L(q) before data is
used to identify the model parameters. Therefore, intro-
duce the filtered output and input signals

yL(t) = L(q)y(t), uL(t) = L(q)u(t). (5)

Identification of an output errormodel using PEM based
on N input-output data consists in finding, among all
the models in the pre-specified model set, the one that
solves the following optimization problem:

θ̂N = argmin
θ∈Θ

VN (θ) (6)

VN (θ) =
1

N

N
∑

t=1

[ŷL(t, θ)− yL(t)]
2 (7)

where ŷL(t, θ) is the (filtered) optimal one-step-ahead
predictor [13]

ŷL(t, θ) = G(q, θ)uL(t). (8)

In this paper, we study the asymptotic properties as
N → ∞ of the optimization problem defined in (6),
through the properties of the limit function (pointwise
in θ ∈ Θ with probability 1 [13])

V (θ) = lim
N→∞

VN (θ)

=
1

2π

∫ π

−π

Φu(ω)
∣

∣L(ejω)(G0(e
jω)−G(ejω , θ))

∣

∣

2
dω

+
1

2π

∫ π

−π

σ2
e

∣

∣L(ejω)H0(e
jω)
∣

∣

2
dω. (9)

where we have applied Parseval’s theorem. We also
define the asymptotic value of the estimate as θ∗ =

limN→∞ θ̂N . Under Assumption 1, it follows that
θ∗ = θ0. Notice that this and (9) holds even if v(t) is
not white as long as u and e are uncorrelated.

3 Properties of the cost function

The prediction error method is based on finding the
global minimum of a cost function, so it is important to
have a formal characterization of its minima.

Definition 1 The limit solution θ0 of the optimization
problem (6) asN → ∞ is also called a global minimum
of the function V (θ). A point θ+ is called a (non-global)
local minimum if it is not a global minimum and there
exists a δ > 0 such that V (θ) ≥ V (θ+) for all θ satisfying
‖θ − θ+‖ < δ.

When a cost function is nonconvex, it can be very chal-
lenging to create an algorithm to solve problem (6) and
find the global minimum θ∗. Most algorithms are based
on the gradient of the cost function and it is not un-
common that they converge to local minima or diverge,
stopping at the boundary of the search space Θ [18, 2,
19, 9, 7, 8]. For example, please see Figure 1 in Exam-
ple 1 in Section 5. This behaviour becomes increasingly
common as the model order becomes larger.
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In this paper we focus in the steepest descent optimiza-
tion algorithm defined by

θi+1 = θi − γi∇V (θi), i = 1, . . . (10)

where γi > 0 is the step size of the algorithm and∇V (θi)
is the gradient of the cost function with respect to θi
(the estimate at iteration i). The algorithm is initialized
with some θ1. The convergence of the algorithm to the
global minimum θ0 depends on its initialization, and a
set of initial conditions for which an algorithm converges
to a minimum is called a domain of attraction (DOA) of
the minimum.

Definition 2 Let θ0 be the global minimum of the func-
tion V (θ). A set Ω ⊂ R

n is a domain of attraction
of the minimum for the function V (θ) and a given algo-
rithm if limi→∞ θi = θ0 for all θ1 ∈ Ω.

The convergence of the algorithm to the global minimum
θ0 depends on the initial condition θ1 and the shape of
the cost function V (θ). In this paper we explore how the
shape of the cost function affects the DOA, similarly to
what has been proposed for controller tuning in [4, 3].
The fundamental concept behind our approach is the
Candidate Domain of Attraction (CDOA), also known as
Decreasing Euclidean Parameter Error Norm (DEPEN)
region [11, 20, 21], which is defined next.

Definition 3 Let θ0 be the global minimum of the func-
tion V (θ). A set Λ is a candidate domain of attrac-
tion for the function V (θ) if θ0 ∈ Λ and

(θ − θ0)
T∇V (θ) > 0 for all θ ∈ Λ such that θ 6= θ0.

(11)

For all points in a CDOA the angleα between∇V (θ) and
the vector (θ−θ0) is smaller than π

2 [rad]. This property
makes the convergence to the global minimum easier to
achieve in gradient-based methods, because the nega-
tive gradient is always pointing towards the global min-
imum, and never away from it. Specifically, the steepest
descent algorithm converges to the global minimum if it
is initialized inside a ball which is a CDOA, as stated in
the next lemma.

Lemma 1 [4, 6]. Let θ0 be the global minimum of V (θ)
and define a set B(θ0) =

{

θ : (θ − θ0)
T (θ − θ0) < α

}

.
If B(θ0) is a CDOA then there exists a sequence γi, i =
1, 2, . . . such that B(θ0) is a DOA of algorithm (10) for
J(θ).

The above lemma shows that if condition (11) is satis-
fied there is a step size sequence γi which ensures the
convergence of the algorithm to the global minimum θ0.
Actual convergence also involves the proper choice of the
sequence γi, an issue which we do not address in this
paper. For more information please see [8].

The CDOA is a property of the cost function which is
strongly related to the shape of the cost function. The
larger is the CDOA, the easier is for the algorithms to
converge to the global minimum of the criterion. Using
the same approach as in [10], it is possible to obtain an
integral form for the condition in (11):

(θ − θ0)
T∇V (θ) =

1

π

∫ π

−π

Φu |L|
2
|G0 −G(θ)|

2
ℜ{K(θ0, θ)} dω > 0 (12)

where we have dropped the frequency dependence to
shorten de expression, where ℜ{·} represents the real
part of a complex number and where we have defined
K(ejω, θ0, θ) as

K(ejω, θ0, θ)
∆
=

1 + FT (ejω)θ0
1 + FT (ejω)θ

. (13)

In order for a set Λ to be a CDOA the integral (12)
must be positive for all θ inside the set. Observe that the
user can manipulate two factors of the integrand: the
input spectrum Φu(ω) and the filter L(ejω). Choosing
carefully these two factors it is possible to ensure the
integral is positive and then to enlarge the CDOA set;
this is exactly what we propose in this article.

3.1 Input design

The article [10] proposes a method to design the in-
put spectrum Φu(ω) with objective to improve the con-
vergence of the optimisation algorithms. The method
parametrises the input spectrum and solves an optimi-
sation problem where the energy of the input signal is
minimised while imposing a bound on the variance of
the estimated model parameters. The constraint (12) is
also imposed on the optimisation problem, and there-
fore, the user can choose a set Λ which is a CDOA.

The implementation of these methods requires that a
first experiment is run to estimate a rough model, and
then the optimal input signal is computed, to be used in
a second experiment. The user must run a specific exper-
iment, which is not always possible. It is also usual that
the user only has access to data previously collected from
the process, and cannot run the optimal experiment.

When the user has the freedom to runmany experiments
on the process, the input design proposed in [10] is rec-
ommend since it improves the convergence of the algo-
rithms and it also reduces the variance of the estimate
using the optimal input signal. However, if the data is
already collected or if the user cannot choose the input
signal, then all he/she can manipulate is the filter L(q)
to ensure condition (12) is verified. In this article we pro-
pose a method to choose the filter L(q).
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3.2 Iterative filtering

Condition (12) is an integral whose integrand is com-
posed by several factors, all of which are non-negative
by construction, except for the factor ℜ

{

K(ejω, θ0, θ)
}

.
Thus, whether or not the integral is positive depends
exclusively on the function K(ejω, θ0, θ). The article [9]
shows that if all poles and zeros of the transfer function
K(ejω, θ0, θ) are inside the unit circle, bothK(ej0, θ0, θ)
and K(ejπ , θ0, θ) are real and positive. Using this fact
and the continuity of the function K(ejω, θ0, θ) with re-
spect to both ω and θ, as well as the compactness of Θ,
results in the following lemma.

Lemma 2 There exist constants ωl, ωh ∈ (0, π) and δ >
0 such that for all θ ∈ Θ:

ℜ
{

K(ejω, θ0, θ)
}

> δ, 0 ≤ ω ≤ ωl,

ℜ
{

K(ejω, θ0, θ)
}

> δ, ωh ≤ ω ≤ π. (14)

The integrand of (12) is thus always positive for suffi-
ciently low or high frequencies. Hence, if this integrand
has large magnitude at these ranges the whole integral
is positive, as desired. This property, in turn, can be en-
forced by properly choosing the filter L(q), so as to em-
phasize low and/or high frequencies.

Therefore, using the filter L(q) one can ensure that the
set Θ is a CDOA which makes it easier for gradient-
based algorithms to converge to the global minimum θ0.
The result is simple and powerful but of course it does
not come for free. By filtering out some frequencies from
the data, the total energy of the signals will be reduced,
thus increasing the variance of the resulting estimate, an
increase that can be dramatic. Remember that all the
results came from the analysis of the asymptotic cost
function V (θ). When a finite data set is utilised then the
noise on the output will affect the estimate even more if
the input energy is reduced. To overcome this problem,
we propose the application of a bank of successive filters,
as described in the next section.

4 The algorithm

To overcome the difficulties of optimizing the OE-PEM
cost function, the following homotopy method is pro-
posed:

(1) Choose M ∈ N (number of pre-filters) and θ̂0N ∈ Θ
(initial condition).

(2) For i = 1, . . . ,M , do
(a) Pre-filter the data ZN by a low pass filter 1

Lωi(q) of bandwidth ωi = πi/M .

1 In this section we have added the superscript ω to the
prefilter L to emphasize the dependence on the bandwidth
ω.

(b) Compute the OE-PEM estimate θ̂iN based on
the pre-filtered data, using a gradient scheme

starting from the initial condition θ̂i−1
N .

(3) Define the final estimate as θ̂N , θ̂MN .

The family of low pass filters to be considered in this
algorithm is assumed to satisfy the following conditions:

Assumption 2 {Lω(q)} and {∂Lω(q)/∂ω} are uni-
formly stable families of rational transfer functions whose
coefficients are continuously twice differentiable in ω ∈
[0, π]. Furthermore, Lω(q) → 1 weakly as ω → 1 ( i.e.,
∫ π

−π |L
ω(ejτ )|2f(τ)dτ →

∫ π

−π f(τ)dτ as ω → 1 for all

continuous functions f : [−π, π] → R
+
0 ), and for all δ ∈

(0, π) it holds that
∫ π

δ |Lω(ejτ )|2dτ
/

∫ δ

0 |Lω(ejτ )|2dτ →

0 as ω → 0.

The homotopy method possesses the following asymp-
totic convergence property:

Theorem 3 Under Assumption 1 and 2, there is an

M0 ∈ N such that the estimate θ̂N provided by the ho-
motopy method converges to θ0 as N → ∞ almost surely

for all M ≥ M0, irrespective of θ̂0N .

PROOF. Let us denote by V ω
N the OE-PEM cost func-

tion when the data ZN has been pre-filtered by a low
pass filter Lω of bandwidth ω, and let us define V̄ ω(θ)
as the pointwise limit (in θ) limN→∞ V ω

N (θ). Notice that
V π
N corresponds to the OE-PEM cost function applied

to the unfiltered data. In order to establish this result,
we split the proof into several steps:

(1) Show that there is an ε > 0 such that the region
{θ ∈ Θ : ‖θ − θ0‖2 < ε} is a CDOA for the func-
tion V̄ ω for all ω ∈ (0, π].

(2) Establish that, given any ω ∈ (0, π), with proba-
bility one, there exists an N0 ∈ N (dependent on
the realization of ZN and on θ0) such that for all
N ≥ N0, the set {θ ∈ Θ : ‖θ − θ0‖2 < ε/2} is a
CDOA for the function V ω

N for all ω ∈ (ω, π].
(3) Show that there exists an M0 ∈ N such that for all

M ≥ M0, with probability one, there is an N1 ∈ N

such that Θ is a CDOA for the function V
π/M
N for

all N ≥ N1.
(4) Conclude that, with probability one, the estimate

θ̂N provided by the homotopy method for the given

value of M satisfies ‖θ̂N − θ0‖2 < ε/2.

As ε can be made arbitrarily small, the preceding steps
would establish the convergence of the homotopy-based
estimator. In the sequel, the aforementioned steps are
detailed:

Step 1. It is known that, under the stated assumptions,
θ0 is the unique global minimum of V̄ ω for all ω ∈ (0, π];
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this is due to the fact that G0 and G are analytic in
a neighbourhood of the unit circle, hence if Lω(G0 −
G) ≡ 0, which means that G0(e

jω)−G(ejω , θ) = 0 in a
sub-interval of [−π, π], then G0 −G ≡ 0. Furthermore,
according to Lemma 2 and Assumption 2 there is a ω̄ ∈
(0, π] such that θ0 is the only local minimizer of V̄ ω for
all ω ∈ (0, ω̄]; this follows from the fact that by making
the bandwidth of the prefilter, ω, sufficiently small, the
integral in (12) is strictly greater than 0 for every fixed
θ ∈ Θ \ {θ0}. Due to the persistence of excitation of the
data and the global identifiability of G, it follows that

∂2V̄ ω

∂θ∂θT
(θ0) > 0, ∀ω ∈ [ω̄, π], (15)

i.e., the smallest eigenvalue of the Hessian of V̄ ω at θ0 is
strictly positive for all ω ∈ [ω̄, π]. In addition, due to the
rational structure of Lω and the continuously differen-
tiable dependence of the coefficients of Lω on the band-
width ω, such eigenvalue is a continuous function of ω in
that range. Now, let us denote by δ(ω) the infimum of
the Euclidean distance between θ0 and any other criti-
cal point of V̄ ω in Θ, for ω ∈ [ω̄, π]. Evidently, δ(ω) > 0.
If infω∈[ω̄,π] δ(ω) = 0, then λmin(∂

2V̄ ω(θ0)/∂θ∂θ
T ) = 0

for some ω ∈ [ω̄, π], which contradicts (15). This means
that infω∈[ω̄,π] δ(ω) > 0, and we can take

ε =
1

2
inf

ω∈[ω̄,π]
δ(ω).

Step 2.Under the stated assumptions, Lemma 3.1 of [12]
can be applied to conclude the uniform convergence of
V ω
N (θ) (and its first two derivatives with respect to θ)

over θ ∈ Θ and ω ∈ [ω, π], i.e., where ω is included as
an additional “parameter”. This means that

lim
N→∞

sup
ω∈[ω,π]
θ∈Θ

∣

∣V ω
N (θ) − V̄ ω(θ)

∣

∣ = 0 w.p.1

lim
N→∞

sup
ω∈[ω,π]
θ∈Θ

∥

∥

∥

∥

∂V ω
N (θ)

∂θ
−

∂V̄ ω(θ)

∂θ

∥

∥

∥

∥

2

= 0 w.p.1 (16)

lim
N→∞

sup
ω∈[ω,π]
θ∈Θ

∥

∥

∥

∥

∂2V ω
N (θ)

∂θ∂θT
−

∂2V̄ ω(θ)

∂θ∂θT

∥

∥

∥

∥

2

= 0 w.p.1.

These results imply the statement of Step 2.

Step 3. If we take any ω ∈ (0, ωl/2) (where ωl is defined
in Lemma 2), then equations (16) imply that with prob-
ability one, there is anN1 ∈ N such that for all N ≥ N1,
Θ is a CDOA for the function V ω

N for all ω ∈ (ω, ωl/2)
2 .

Therefore, the statement of Step 3 holds for everyM ∈ N

such that π/M < ωl/2.

2 The need for defining ω > 0 come from the fact that V 0

N

is constant, i.e., it does not have a unique global minimum.

Step 4. By taking M as in Step 3, and any N ≥
max{N0, N1}, it follows from Steps 2 and 3 that

‖θ̂1N − θ0‖2 < ε/2. Proceeding by induction on
i ∈ {1, . . . ,M − 1}, it can be seen from Step 2 that

if ‖θ̂iN − θ0‖2 < ε/2 then ‖θ̂i+1
N − θ0‖2 < ε/2. This

establishes Step 4, and concludes the proof. ✷

The dependence of the value of M0 on the (unknown)
true parameter vector θ0 can be avoided by a standard
compactness argument, as shown in the following corol-
lary.

Corollary 4 There exists anM0 ∈ N independent of the
value of θ0 for which the statement of Theorem 3 holds.

PROOF. Define, for each m ∈ N, the set

Θm := {θ ∈ Θ : Theorem 3 holds for θ0 = θ with M0 = m}.

It can be seen that {Θm : m ∈ N} is an open cover of
Θ. The compactness of Θ then implies the existence of
a finite subcover {Θmi

: 1 ≤ i ≤ n} of Θ, where n ∈ N.
The corollary follows by taking M0 = max{mi : 1 ≤
i ≤ n}. ✷

Remark 1 Corollary 4 establishes the existence of M0,
but it does not provide a value for it. The smallest value
of M0 can in principle be computed from the following
semi-infinite optimization problem:

min
M0∈N

M0

s.t.

∫ π

−π

Φu

∣

∣

∣L
π/M0

∣

∣

∣

2

|G(θ0)−G(θ)|2 ·

·ℜ
{

K(ejτ , θ0, θ)
}

dτ > 0, for all θ, θ0 ∈ Θ, θ 6= θ0.

This optimization problem can be approximated, by dis-
cretizing the constraint, prior to performing an experi-
ment, since it does not depend on experimental data. We
do not pursue this approach further in this paper, how-
ever, due to reasons of space.

5 Case Studies

5.1 Example 1 - One dimensional

Consider the example where θ is a scalar, L = 1, σe = 0,
u(t) = 70 sin(t/20) + 140 sin(t/5),

G0(q) =
0.006q−3

(1 − 0.9q−1)(1− 0.8q−1)(1− 0.7q−1)

=
0.006q−3

1− 2.4q−1 + 1.91q−2 − 0.504q−3
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and

G(θ) = (0.006q−3)/((1−2.4q−1+1.91q−2−0.504q−3)

+ θ(−0.16q−1 + 0.26q−2 + 0.46q−3)).

The model G(θ) is stable for θ ∈ Θ = [−0.06 0.032]
and the minimum of the function occurs when θ = 0. The
cost function V (θ) is shown in Figure 1 in blue. Observe
that the function has only one minimum, but any gradi-
ent based algorithm will converge to the boundary of the
search space (0.032) when initialized with θ1 > 0.0229.
Observe that this cost function does not possess local
minima, but still it is nonconvex and application of stan-
dard optimization to it may fail.

Consider now that the filter L(q) = 0.0155+0.0155q−1

1−0.9691q−1

(first order Butterworth filter) is used to modify the in-
put/output data and shape the cost function. The re-
sulting cost function is also shown in Figure 1 in red.
Observe that now the steepest descent algorithm can
converge to the global minimum for any initial condition
inside the set Θ.

The filter has changed the cost function and enlarged the
candidate domain of attraction. However, as it is possible
to see in the figure, the cost function becomes flatter,
and this indicates that the variance of the estimate will
be larger, when the filtered data is used.

−0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.2

0.4

0.6

0.8

1

1.2

1.4

θ

V
(θ

)

 

 
With filter
Without filter

Fig. 1. Cost function V (θ) with and without filter.

5.2 Example 2 - Simple example

Consider the case where the process is described by

G0(q) =
q−1 − 0.9q−2

(1− 0.85q−1)(1− 0.95q−1)

=
q−1 − 0.9q−2

1− 1.8q−1 + 0.8075q−2
,

H0(q) =
1− 0.8q−1

1− 0.7q−1
, (17)

with noise variance σe = 1 and that u(t) is Gaus-
sian noise with unitary variance. The length of the
input/output data set is N = 1000 samples.

The model is described by

G(θ) =
θ1q

−1 + θ2
1 + θ3q−1 + θ4q−2

=
BT (q)θ

1 + FT (q)θ

where

B(q) = [q−1 q−2 0 0 ]T , F (q) = [0 0 q−1 q−2]T .

Observe that the model G(q, θ) can exactly describe the
real systemG0(q) when θ = θ0 = [1 −0.9 −1.8 0.8075]T .

The parameters of the model are identified using the
steepest descent algorithm where the initial condition
is obtained using the standard least-squares algorithm
(which provides biased estimates for the parameters).
The procedure is repeated 100 times, so we have obtained
100 different estimates to the model. A histogram of the
parameters is plotted in Figure 2, where it is possible
to observe that the estimates are very disperse. Only 55
estimates converged to points close to θ0 while the others
45 converged to points distant from the globalminimum.
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Fig. 2. Histogram of parameter estimates in Example 2 when
no prefiltering is used.

Let’s now use the proposed iterative algorithm, where
the data is initially filtered by a first order Butterworth

filter L(q) = 0.1356+0.1367q−1

1−0.7265q−1 . The steepest descent is

used again, and the obtained estimates (with filter) are
used as initial condition again on the steepest descent
algorithm, but now with the original data (without fil-
ter). The procedure was again repeated 100 times and
the estimates formed the histogram in Figure 3. Now,
all the estimates converged to points close to the global
minimum θ0.
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Fig. 3. Histogram of parameter estimates with proposed al-
gorithm.

5.3 Example 3 - A somewhat more complex example

Consider the true system described by

G(q, θ0) =
BT (q)θ0

1 + FT (q)θ0
, H0(q) = 1, σ2

e = 0.01,

where

B(q) = [q−1 q−2 q−3 q−4 q−5 q−6 q−7 q−8 0 0 0 0 0 0 0 0 ]T ,

F (q) = [0 0 0 0 0 0 0 0 q−1 q−2 q−3 q−4 q−5 q−6 q−7 q−8]T .

θ0 = [−0.2073 0.1815 1.352 − 3.356 3.061 − 1.045

−0.07957 0.0944 − 6.549 19.2 − 32.83 35.77

−25.39 11.45 − 3 0.3491]T .

This model represents a power system consisting of two
synchronous generators connected to the grid, with data
taken from [1]. The transfer function G0(q) describes
the relation between the field voltage applied to the first
generator and the angular speed of the same generator
at a given operating condition.

Let us identify a model of this system with an output
error model structure

G(q, θ) =
BT (q)θ

1 + FT (q)θ

The model set G is formed by all stable models of the
form shown above and therefore the parameter vector
θ should be constrained to the set Θ such that G(q, θ)
is stable. Observe that the true system belongs to this
model set. The iterative filtering approach proposed in
this paper has been applied to this problem. At each it-
eration the input/output data were filtered by a 20th or-

der low-pass FIR filter designed by a window-method 3 .
Six iterations of the proposed algorithmwere performed,
where the cut-off frequencies of the filters were 0.4π,
0.5π, 0.6π, 0.7π, 0.8π and 0.9π (rad/s) respectively.

For comparison, the parameter θ has also been estimated
using the Matlab toolboxes unit [17] and ident [14],
besides the algorithm proposed in Section 4. The unit
toolbox was used with the following commands

m.delay=1; m.nA=8; m.nB=7; model=est(z,m);

and the ident toolbox was used with the following
command: model = oe(data, [8 8 1]);. The proposed
method used the ident toolbox, where the data was
filtered as specified above.

In the three cases the same input signal u(t) has been
applied to generate the data: a white noise sequence with
unit variance (σ2

u = 1) and N = 1000 samples.

For each one of the three algorithms, 100 Monte-Carlo
runs have been performed, thus providing 100 parameter
estimates with each method. The results obtained with
the toolbox unit are summarized in Figure 4, where the
vertical axis presents the value of each one of the sixteen
elements of the parameter vector θ and the horizontal
axis corresponds to the Monte Carlo runs. The Monte-
Carlo runs were re-ordered in terms of the smallest θ. It
is seen that the first 57 points of the graph present val-
ues close to the true parameter value θ0, indicating that
in these 57 runs the algorithm converged to the global
minimum of the cost function. But in the remaining 43
Monte Carlo runs the values are close to another point
in the parameter space, far away from the true value θ0,
indicating that the algorithm has not yielded the global
minimum of the cost function. The boxplot of the pa-
rameters is shown in Figure 5. On each box, the central
mark is the median, the edges of the box are the 0.25
and 0.75 percentiles, the whiskers extend to the most ex-
treme data points not considered outliers, and outliers
are plotted individually.

In Section 3 we have stated that when the model has
an OE structure and the input is white noise then the
cost function has only one minimum (the global one).
Still, due to the nonconvexity of the cost function and
search space, the unit algorithm had trouble in finding
the global minimum, even though there is no other mini-
mum. In this example the unit algorithm could not find
the global minimum in 43 runs.

Identification of this system using the Matlab toolbox
ident yields results quite similar to those obtained with
the toolbox unit, providing convergence to the global
minimum of the cost function in 26 out of 100 Monte
Carlo runs.

3 The command fir1 of Matlab was used.
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Fig. 4. Monte-Carlo runs with the toolbox unit. The plot
shows the value of the estimated parameter vector at each
run. Each color represents one element of the parameter
vector.
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Fig. 5. Boxplot of Monte-Carlo runs with the toolbox unit.
Each box represents one element of the parameter vector. On
each box, the central mark is the median, the edges of the
box are the 25th and 75th percentiles, the whiskers extend
to the most extreme data points not considered outliers, and
outliers are plotted individually.

When the proposed algorithmwas used, the convergence
to the global minimum has been achieved for every run.
Figure 6 shows the boxplots of the parameters for the
proposed algorithm.

In order to further illustrate the results, we also compute,

for each method, the mean value θm = 1
100

∑100
i=1 θ̂i of

the model’s parameters, where each θ̂i represents the
estimate obtained at the i-thMonte Carlo run. Themean
value of the model parameters obtained with the toolbox
unit, the toolbox ident and the proposed method are,
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Fig. 6. Boxplot of Monte-Carlo runs with the proposed al-
gorithm.

respectively:

θunitm = [−0.2071 − 0.0360 1.3298 − 1.9507 0.9517

−0.0396 − 0.0378 − 0.0276 − 5.5050 13.3882 − 18.5887

15.9136 − 8.4405 2.6183 − 0.4008 0.0164]T

θidentm = [−0.2065 − 0.2952 0.8922 − 0.5885 0.3352

−0.2073 − 0.0484 0.0841 − 4.2033 7.9007 − 8.7065

6.4202 − 3.5476 1.5685 − 0.5030 0.0858]T

θpropm = [−0.2073 0.1794 1.3472 − 3.3269 3.0156

−1.0138 − 0.0910 0.0974 − 6.5355 19.1230 − 32.6493

35.5180 − 25.1770 11.3441 − 2.9679 0.3450]T

Comparing these values with the true parameter θ0
we see that the estimates obtained with the proposed
method are, on average, much closer to the true param-
eter values.

5.4 Example 4 - A really more complex example

The proposed method was also tested in a more complex
case that resembles the practical conditions where one or
more assumptions assumed in this work are not satisfied.
The data set used came from [5], which consists of sets of
input/output data from 30th order systems with small
data length N and large noise variance. We have used
four collections of data sets:

• S1D1: 100 sets of input/output data from fast systems
with SNR = 10 and N = 500

• S2D1: 100 sets of input/output data from slow systems
with SNR = 10 and N = 500

• S1D2: 100 sets of input/output data fast systems with
SNR = 1 and N = 375

• S2D2: 100 sets of input/output data slow systems with
SNR = 1 and N = 375

The “fast” systems have all their poles inside a circle
with radius 0.95 and the “slow” systems have at least
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one pole outside the circle with radius 0.95 (but in-
side the unit circle). Each one of the 400 data sets were
used to estimated a model for the system and the qual-
ity of the model was computed using the FIT measure:

FIT =

(

1−

√

∑

125

k=1
(g0

k
−ĝk)

2

∑

125

k=1
(g0

k
−ḡ0)2

)

, ḡ0 = 1
125

∑125
k=1 g

0
k,

where g0k is the impulse response of the system and ĝk
is the impulse response of the model. The FIT evaluates
1 only if the impulse response of the model is identical
to the impulse response of the system for the first 125
samples, otherwise it evaluates a lower value. The FIT
measure was used in [5] to compare the estimate of the
models using different identification techniques, and dif-
ferent model orders.

In this article, we estimated models of order 5, 15 and
30 using the ident toolbox and the algorithm proposed
in this article. The identmodel was obtained with com-
mand model = oe(data, [n n 1]); and the proposed
method was used with standard steepest descent algo-
rithm on the PEM cost function. The algorithm used
adaptive step size to ensure that the cost is reduced at
each iteration and used 1, 000, 000 steps. The initial con-
dition of the proposed method was obtained using stan-
dard least-squares method which gives biased estimates
since the noise is white. We have opted to use only one

low-pass filter L(q) = 0.0155+0.0155q−1

1−0.9691q−1 (first order But-

terworth filter), to shape the cost function and enlarge
the candidate domain of attraction.

The FIT was computed for eachmodel and the mean was
computed and presented in Table 1. When the model or-
der is 5, the mean values for all data sets (S1D1, S1D2,
S2D1 and S2D2) are higher for the proposed algorithm.
When the model order is 15, the mean values for the
data sets (S1D1, S2D1 and S2D2) are higher for the pro-
posed algorithm. Using the data set S1D2 the proposed
algorithm achieved a lower mean value (less than 2%
smaller). When the model order is 30 and then the As-
sumption 1 is satisfied, for all data sets (S1D1, S1D2,
S2D1 and S2D2) the mean of the FIT is higher for the
proposed algorithm. In this case the mean of the FIT
is much higher with the proposed algorithm than with
ident, which indicates that the ident had trouble in
finding the globalminimum of the criterionwith the high
order models.

In Figure 7 we can see the distribution of FIT for each
data set, with the different algorithms, for 30th order
models. We can observe that not only the mean of the
FIT is smaller with the proposed algorithm, but also the
variance of the measure.

6 Conclusion

This paper discussed the convergence problems associ-
ated with the non-convex optimization problem present

Table 1
Mean of FIT different model order and techniques

S1D1 S2D1 S1D2 S2D2

ident - order 5 0.8698 0.7256 0.7193 0.5207

proposed - order 5 0.8917 0.7382 0.7524 0.6091

ident - order 15 0.8676 0.7311 0.5701 0.4363

proposed - order 15 0.8939 0.8190 0.5608 0.4821

ident - order 30 0.6847 0.5361 0.3175 0.0297

proposed - order 30 0.8483 0.8127 0.3474 0.2863

S1D1 ident S1D1 proposed S2D1 ident S2D1 proposed S1D2 ident S1D2 proposed S2D2 ident S2D2 proposed
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Fig. 7. Boxplot of FIT of models of order 30 with ident and
the proposed method.

in identifying an output errormodel using the prediction
error method. Standard gradient-based optimization al-
gorithms have difficulties to handle this issue. This work
has shown that the shape of the cost function depends on
the spectra of the input/output data collected from an
experiment. Therefore, the cost function may be shaped
to facilitate the convergence of optimization algorithms
to the global minimum using an adequate choice of the
input/output spectra. We have shown that if the in-
put/output spectra are concentrated to low and high fre-
quencies then it is easier to converge to the global min-
imum of the cost function. Then, an iterative filtering
was proposed to change the spectra of the input/output
data in order to change the shape of the cost function
and facilitate the convergence. Conditions for the con-
vergence of the proposed iterative algorithm were then
established and a case study showed that this approach
can be very effective in guaranteeing convergence of OE-
PEM to the global minimum of its optimization crite-
rion, even in cases where standard identification meth-
ods may fail.
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[19] T. Söderström and P. Stoica. Some properties of

the output error method. Automatica, 18(1):93–99,
1982.

[20] Y. Zou and W. P. Heath. Conditions for attain-
ing global minimum in maximum likelihood sys-
tem identification. In Proc. 15th IFAC Symposium
on System Identification, pages 1110–1115, Saint-
Malo, France, July 2009.

[21] Y. Zou and W. P. Heath. Global convergence con-
ditions in maximum likelihood estimation. Inter-
national Journal of Control, 85(5):475–490, 2012.

[22] Yiqun Zou and Xiafei Tang. Large signal-to-noise
ratio quantification in mle for ararmax models. In-
ternational Journal of Control, 87(6):1181–1195,
2014.

10


	1 Introduction
	2 Preliminaries
	3 Properties of the cost function
	3.1 Input design
	3.2 Iterative filtering

	4 The algorithm
	5 Case Studies
	5.1 Example 1 - One dimensional
	5.2 Example 2 - Simple example
	5.3 Example 3 - A somewhat more complex example
	5.4 Example 4 - A really more complex example

	6 Conclusion

