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Abstract

This paper presents a data-driven control method formulated for the disturbance rejection problem. Inspired on the
Virtual Reference Feedback Tuning method, which is based on a tracking reference model, the proposed methodology,
entitled Virtual Disturbance Feedback Tuning, is based on a disturbance model. Using only input/output data collected
on the process (no process model) and a linearly parameterized controller, the optimal controller parameters are obtained
through least squares, resulting in a closed loop system as close as possible to the disturbance model. Experimental
results show the efficiency of the proposed methodology.
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1. Introduction

Data-driven control methods are techniques that ad-
just the parameters of controllers directly from input and
output data, without using a model of the process. A com-
mon theoretical framework for these data-driven methods
is given in [1]. Some of these methods are iterative: the
parameters of the controller are refined from one iteration
to other, using experimental data collected in closed-loop,
until the optimal controller is achieved [2, 3, 4]. Others are
“one-shot” - that is, they directly estimate the controller’s
parameters on the basis of one sequence of input-output
data [5, 6, 7]. Among the one-shot methods, Virtual Ref-
erence Feedback Tuning (VRFT) [5] has been extended
to output sensitivity and control effort minimization [8, 9]
and widely applied for reference tracking in different ap-
plications [10, 11, 12, 13, 14, 15, 16].

Indeed, most of one-shot methods aim to solve a track-
ing model reference design problem where the objective is
to obtain a closed-loop response as close as possible to a
desired response defined by a reference model. However, in
most industrial applications, disturbance and perturbation
occurrences are more frequent than reference changes and
the primary objective of the controller is to reject these
effects efficiently. Yet, when a tracking model reference
approach is used and the desired closed loop response is
faster than open loop, the closed loop responds accord-
ingly to reference changes, but the settling time to reject
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load disturbances is close to the open-loop settling time,
which is slower than the desired closed loop response.

A model matching controller design for load distur-
bance rejection is presented in [17], where a desired distur-
bance model is defined, but it depends on the knowledge
of the process model. Considering data-driven approaches,
an adapted version of VRFT for continuous-time signals is
presented in [18] where the load disturbance problem is ad-
dressed as a reference model design by rewriting the refer-
ence model as a function of the desired disturbance model
and the unknown controller. The articles [19, 20] pro-
pose two and three degrees of freedom controllers for dis-
turbance attenuation of Virtual Reference Feedback Tun-
ing, but it is assumed that the disturbance signal can be
measured. In [21] a robust controller design is applied
through the application of IFT, where the optimization
is performed considering the reference tracking term and
other terms related to sensitivities, including the one from
load disturbance. However, the authors do not define a
desired disturbance model.

Once load disturbance rejection is most likely more
common than reference tracking in industrial applications,
a larger effort on designing data-driven methods to solve
such problems is needed. Inspired by the VRFT formu-
lation, this article presents the Virtual Disturbance Feed-
back Tuning (VDFT) method, which is based on a virtual
disturbance signal computed from a desired disturbance
model. The proposed method assumes that the distur-
bance signal cannot be measured and it is able to find
the ideal controller for the disturbance rejection problem
under ideal conditions. In the practical case, where sig-
nals are corrupted with noise and the controller struc-
ture is restricted to low order (for instance proportional-
integral controllers), instrumental variables and filters are
proposed to improve the quality of the controller. Sta-
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tistical properties of the estimate are demonstrated and
experimental results show the applicability of the method-
ology.

2. Model Matching Design

2.1. Preliminaries
Consider a linear time-invariant discrete-time single-

input single-output process

y(t) = G(q)u(t) + v(t) (1)

where u(t) is the process input, v(t) is the output noise,
which is a stochastic process with zero mean, G(q) is the
process transfer function and q is the time shift operator
qx(t) = x(t+ 1). The process input signal is composed by
two terms:

u(t) = uc(t) + d(t) (2)

where d(t) is a disturbance signal, uc(t) is the control signal

uc(t) = C(q, ρ) (r(t)− y(t)) , (3)

r(t) is a reference signal and C(q, ρ) is a linear time-invariant
controller. The controller is parametrized by ρ ∈ Rn,
and belongs to a user defined controller class defined as
C = {C(q, ρ), ρ ∈ P ⊆ Rn} , where the controllers are lin-
early parametrized, i.e,

C(q, ρ) = ρT C̄(q)

with C̄(q) being a column vector composed by transfer
functions. The block diagram of the system in closed-loop
is presented in Fig. 1.

C(q, ρ)

d(t)

G(q)

v(t)

uc(t) u(t)r(t) y(t)

-

Figure 1: Closed-loop block diagram.

Both r(t) and d(t) are assumed to be quasi-stationary
and uncorrelated with the noise, that is Ē[r(t)v(s)] =
0;∀t, s, Ē[d(t)v(s)] = 0; ∀t, s and

Ē[f(t)] , lim
N→∞

1

N

N∑
t=1

E[f(t)]

with E[·] denoting expectation [22].
The system (1)-(2)-(3) in closed-loop reads:

y(t) = T (q, ρ)r(t) +Q(q, ρ)d(t) + S(q, ρ)v(t) (4)

where the terms are defined as: S(q, ρ) = (1+C(q, ρ)G(q))−1,
Q(q, ρ) = G(q)S(q, ρ) and T (q, ρ) = C(q, ρ)G(q)S(q, ρ).

The role of the control designer is to choose the pa-
rameter vector ρ of the controller in order to obtain good
performance for the closed-loop system. It is assumed that

the user can collect a sufficiently rich batch of process in-
put and output data

ZN = [u(1), y(1), . . . , u(N), y(N)]

and the parameters of the controller are estimated from
these data, without the use of a mathematical model of
the plant.

Disturbance Model (DM) design consists in specifying
a desired output for the closed-loop system considering a
specified disturbance signal, that is

ydd(t) = Qd(q)d(t),

where Qd(q) is the Disturbance Model and then solve an
optimization problem where the parameters of the con-
troller are obtained as follows

ρDM = arg min JDM (ρ),

with
JDM (ρ) , Ē[(Qd(q)−Q(q, ρ))d(t)]2. (5)

An usual choice for the Disturbance Model2 is to in-
clude a zero at 1 to ensure null steady-state gain for con-
stant disturbances and to choose the poles accordingly to
the desired settling time.

Equation (5) shows that if the DM ideal controller

CDMd (q) =
G(q)−Qd(q)
G(q)Qd(q)

were used in the closed-loop then the objective function
(5) would evaluate to zero. However, this controller may
not be represented by the controllers class C. When it
does, the following assumption holds.

Assumption 1. Disturbance matching condition

∃ ρDMd such that C(q, ρDMd ) = CDMd (q).

When Assumption 1 does not hold, the obtained controller
C(q, ρDM ) is not the DM ideal controller, but it is the best
controller that can be used, i.e., it minimizes JDM (ρ) and
results in a closed-loop response that is as close as possible
to the desired output ydd(t). On the other hand, since the
controller C(q, ρDM ) is optimal for disturbance rejection,
the performance for reference changes is reduced and the
closed loop may present overshoot due to an aggressive
control action, as it will be seen in the results at the end
of the paper.

3. Virtual Disturbance Feedback Tuning

This section describes the main result of the article,
which is a direct (non iterative) data-driven approach for
the disturbance model design. The method is inspired in

2considering minimum phase systems
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the Virtual Reference Feedback Tuning [5], and uses a vir-
tual disturbance signal to compute the gains of a linearly
parameterized controller aiming to reduce the effect of dis-
turbances on the closed-loop system response.

Consider initially the noise-free and null reference case
where v(t) = 0 in (1) and r(t) = 0 in (3). Through either
an open-loop or a closed-loop experiment, input data u(t)
and output data y(t) are collected on the process. Given
the measured y(t), the virtual disturbance signal d̄(t) is
defined such that

Qd(q)d̄(t) = y(t),

and the virtual control signal is given by

ūc(t) = u(t)− d̄(t), (6)

as shown in Fig. 2.

C(q, ρ) G(q)
ūc(t) u(t)

Q−1d (q)

r(t) = 0 y(t)

-

d̄(t)

Figure 2: Closed-loop block diagram and the virtual system’s signals
for the VDFT method.

Even though the plant G(q) is unknown, when it is
fed by u(t) (the measured input signal), it generates y(t)
as output. So, a “good” controller is one that generates
ūc(t) when fed by −y(t). Since both signals ūc(t) and
−y(t) are known, the controller design can be seen as the
identification of the dynamical relation between −y(t) and
ūc(t). As a result of this reasoning, the VDFT method
solves the following optimization problem:

ρV D = arg min JV D(ρ)

where

JV D(ρ) =

N∑
t=1

{K(q) [ūc(t) + C(q, ρ)y(t)]}2 , (7)

in which K(q) is a filter. Since the controller is linearly
parametrized, JV D(ρ) is quadratic and the optimization
problem has the following closed solution

ρV D = −

(
N∑
t=1

ϕK(t)ϕTK(t)

)−1 N∑
t=1

ϕK(t)ūcK(t) (8)

where

ϕK(t) = C̄(q)K(q)y(t), ūcK(t) = K(q)ūc(t). (9)

In the sequence, estimate properties are presented con-
sidering noisy and noiseless cases and satisfaction of As-
sumption 1.

3.1. Assumption 1 is satisfied: noiseless case
Theorem 1. When signals are noise-free and Assump-
tion 1 is satisfied, then C(q, ρV D) = CDMd (q).

Proof. Observe that if there is no noise, then y(t) =
G(q)u(t). Besides, when Assumption 1 is satisfied CDMd (q) =
C(q, ρDMd ). Now, omitting the dependence on t and q to
save space, the criterion can be written as

JV D
(
ρDMd

)
=

N∑
t=1

{
K
[
ūc + C

(
ρDMd

)
y
]}2

=

N∑
t=1

{
K
[
u−Q−1d y + CDMd y

]}2
=

N∑
t=1

{
K
[
u−Q−1d Gu+ CDMd Gu

]}2
=

N∑
t=1

{
K

[
u− 1 +GCDMd

G
Gu+ CDMd Gu

]}2

=

N∑
t=1

{
K
[
u− u−GCDMd u+ CDMd Gu

]}2
= 0

such that ρDMd is the minimum of JV D(ρ) for any filter
K(q), which implies that ρV D = ρDMd . �

3.2. Assumption 1 is satisfied: noisy case
In the practical case, where signals are corrupted with

noise, the controller identification through least squares
is biased because the input signal for the identification
is corrupted by noise. Aiming to mitigate the bias, an
instrumental variable technique is proposed, as it was in
the VRFT methodology [5]. It is recommended to use as
instrumental variable the output signal of a second exper-
iment, where the same inputs (reference, disturbance and
control) signals are applied to the system. In this case, the
controller parameter vector is estimated as

ρV DIV = −

(
N∑
t=1

ζK(t)ϕTK(t)

)−1 N∑
t=1

ζK(t)ūcK(t) (10)

where the instrumental variable is given by

ζK(t) = C̄(q)K(q)y′(t) (11)

and y′(t) is the output collected on the second experiment.
With this IV choice, a statistical property of the estimate
can be stated.

Theorem 2. When signals are noisy, Assumption 1 is
satisfied, and the controller parameters are estimated through
(10) then asymptotically (N →∞) E

[
ρV DIV

]
= ρDMd .

Proof. First, observe that y(t) = G(q)u(t) + v(t) and
y′(t) = G(q)u′(t) + v′(t) such that the two noises are un-
correlated.
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Substituting (9) and (11) in equation (10), and omit-
ting the dependence on t and q to save space, the param-
eter ρV DIV can be written as

ρV DIV = −M−1
N∑
t=1

(
C̄Ky′

) (
K(u−Q−1d y)

)
whereM =

∑N
t=1

(
C̄Ky′

) (
C̄Ky

)T . Observe thatQ−1d (q) =
(ρDMd )T C̄(q) +G−1(q) and therefore

ρV DIV = −M−1
N∑
t=1

(
C̄Ky′

) (
K(−(ρDMd )T C̄y −G−1v)

)
= ρDMd +M−1

N∑
t=1

(
C̄Ky′

)
KG−1v.

Since v(t) is uncorrelated with y′(t), asymptotically the
expected value of the second term is zero and therefore
E
[
ρV DIV

]
= ρDMd , which concludes the proof. �

3.3. Assumption 1 is not satisfied
Consider now the case where signals are still noise-free,

but Assumption 1 is not satisfied, which means that the
chosen controller structure (for instance PID) cannot rep-
resent the ideal full order controller CDMd (q). In this case,
the best controller that can run in the loop is C(q, ρDM ),
which is the controller that minimizes the cost function
JDM (ρ). Theorem 1 shows that if Assumption 1 is satis-
fied then the controller obtained with VDFT is the optimal
controller ρV D = ρDM but this is not true in general if the
assumption is violated. However, the next theorem shows
that a specific choice for filter K(q) makes JV D(ρ) and
JDM (ρ) exactly the same such that ρV D = ρDM .

Theorem 3. Consider the case where N →∞ and let the
filter be given by

∣∣K(ejω)
∣∣2 =

∣∣Qd(ejω)Q(ejω, ρ)
∣∣2 Φd(ω)

Φy(ω)
, ∀ω ∈ [−π, π].

(12)
where Φd(ω) is the spectrum of the disturbance signal we
want to reject and Φy(ω) is the spectrum of the collected
output signal. Then JV D(ρ) = JDM (ρ), and consequently
ρV D = ρDM .

Proof. Applying Parseval’s Theorem on (5) and omitting
the dependence on ω the criterion becomes

JDM (ρ) =
1

2π

∫ π

−π

∣∣∣∣ G

1 + CDMd G
− G

1 + C(ρ)G

∣∣∣∣2 Φd(ω)dω

=
1

2π

∫ π

−π

∣∣∣∣G(1 + C(ρ)G)−G(1 + CDMd G)

(1 + CDMd G)(1 + C(ρ)G)

∣∣∣∣2 Φd(ω)dω

=
1

2π

∫ π

−π
|QdQ(ρ)|2

∣∣C(ρ)− CDMd
∣∣2 Φd(ω)dω (13)

Now, substituting (6) into (7) and omitting the depen-
dence on q the virtual disturbance criterion becomes

JV D(ρ) =

N∑
t=1

{
K
[
u(t)− d̄(t) + C(ρ)Gu(t)

]}2
Using the fact that d̄(t) = (1 + CDMd G)u(t) one gets that

JV D(ρ) =

=

N∑
t=1

{
K
[
u(t)− (1 + CDMd G)u(t) + C(ρ)Gu(t)

]}2
=

N∑
t=1

{
KG

(
C(ρ)− CDMd

)
u(t)

}2
. (14)

In the limit case where N → ∞ Parseval’s Theorem
can be applied to (14), which gives

JV D(ρ) =
1

2π

∫ π

−π
|KG|2

∣∣C(ρ)− CDMd
∣∣2 Φu(ω)dω. (15)

Comparing (13) and (15) it is clear that if

|K|2 = |QdQ(ρ)|2 Φd(ω)

Φy(ω)

then JV D(ρ) = JDM (ρ), concluding the proof. �

Notice thatQ(ejω, ρ) is unknown and filter (12) can not
be implemented. However, the approximation |Q(ejω, ρ)| ≈
|Qd(ejω)| can be made resulting in the implementable filter

∣∣K(ejω)
∣∣2 ≈ ∣∣Qd(ejω)Qd(e

jω)
∣∣2 Φd(ω)

Φy(ω)
, ∀ω ∈ [−π, π]

(16)
which can be used to approximate JV D(ρ) and JDM (ρ). It
is important to emphasize that filter (16) is an approxima-
tion of the filter described in Theorem 3 and that the cost
functions JV D(ρ) and JDM (ρ) will be similar but their
minimum will not be exactly the same. Two important
remarks on filter (16) need to be considered:

• Signal spectra estimation: in order to obtain (16),
both disturbance and output spectra are needed. Dis-
turbance spectrum estimation is an easy task if the
user knows the class of disturbances to be rejected,
as step disturbances, for example. However, since
the process model is unknown, the output spectrum
need to be estimated from experimental signals;

• Choice of Qd(q): The Disturbance Model has direct
influence on the obtained controller. If the desired
response is very different from the best performance
that can be achieved with the chosen controller struc-
ture, then the approximation of the filter is not valid
and the obtained controller with VDFT may be very
different from C(q, ρDM ), which is also very different
from CDMd (q).
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4. Practical aspects of the method

When using the VDFT method, there are two impor-
tant choices the user must make: the class C of controllers
and the desired disturbance model Qd(q). The desired dis-
turbance model choice directly defines the ideal controller
CDMd (q), while the choice of the controller structure, to-
gether with the disturbance model, defines the optimal
controller C(q, ρDM ). In practice, it is usual that the class
of controllers is fixed due to hardware constraints (for in-
stance PID in industrial PLCs) and then it is common that
Assumption 1 is violated. The user should keep in mind
that since the controller structure is fixed, there are lim-
its on the achievable performance for the closed loop sys-
tem and that some desired disturbance models may not be
reachable. For instance, when a high performance distur-
bance model is chosen with a low order controller then
the ideal controller CDMd (q) and the optimal controller
C(q, ρDM ) may be very different. In this case, the per-
formance of the closed loop system with C(q, ρDM ) would
be much worse than expected3. When this happens, the
user has two options:

• to choose a different (larger) structure for the con-
troller, such that the difference between the optimal
controller and the ideal controller is smaller;

• to specify an “easier” Disturbance Model Qd(q), such
that the controller structure is flexible enough to
achieve an acceptable response.

Usually the structure of the controller is chosen a priori
and then the problem boils down to choosing the distur-
bance model. When making this choice, the user must
keep in mind that there is a limit on the achievable perfor-
mance, but this limit is unknown since the model is also
unknown. For the tracking model reference problem, sev-
eral authors recommend an iterative procedure for choos-
ing the reference model [1, 23, 24], an approach that can be
adapted to the load disturbance problem. The main idea
is to choose initially an "easier" disturbance model (with
large settling time and high gain), compute the controller
with the proposed method and check with an experiment
if this disturbance model was achieved. If the output re-
sponse is close to the desired output, the user may choose
a slightly more "difficult" disturbance model (with smaller
settling time and smaller gain) which will result in a more
aggressive controller. This procedure may be repeated un-
til the point where the current disturbance model cannot
be matched by the closed loop system with the chosen
controller class.

The proposed procedure is not only useful for deter-
mining the desired disturbance model as it is to ensure
that approximation used in designing the filter K(q) is

3Observe that the described problems are inherent to any distur-
bance model problem, and not only to data-driven approaches.

valid. Also, if the closed loop tests are done with a known
disturbance signal d(t) then

Φy(ω) = |Q(ejω, ρ1)|2Φd(ω),

and filter (16) can be written as

|K(ejω)|2 ≈
∣∣Qd(ejω)Qd(e

jω)
∣∣2

|Q(ejω, ρ1)|2
Φd(ω)

Φd(ω)
=

∣∣Qd(ejω)Qd(e
jω)
∣∣2

|Q(ejω, ρ1)|2

which does not explicitly depend on signals’ spectra. Fur-
thermore, in the case where the disturbance model Qd(q)
is close to the current disturbance Q(q, ρ1), then the fil-
ter can be approximated to K(q) ≈ Qd(q) which is much
easier to implement and does not depend on extra proce-
dures.

5. Experimental Results

The proposed methodology was applied to design a
controller of a pilot plant, where the goal is to control
the liquid level. The same plant was used in [1], where
VRFT was used to design the flow control of one tank.
The schematic diagram in Fig. 3 describes the main parts
of the process, considering a multivariable approach. The
whole process is built with of-the-shelf industrial equip-
ments (pumps, valves, sensors and tanks). Tanks 1 and 2
are 70 liters each, while tank 3 is a 250 liters container.

 V2  V1

022

011

LIC

LIC

Tank 2

Tank 1

021
LIC

012
LIC

Tank 3

Figure 3: Schematic diagram of the pilot plant.

In this experiment the water is pumped up from Tank 3
to Tank 2 through Valve 1, from Tank 1 to Tank 2 through
Valve 2 and back to Tank 3 by gravity. The liquid level of
Tank 2 is y(t) and the opening of Valve 1 is the manipu-
lated variable u(t). Also, the opening of Valve 2 is used as
disturbance d(t).

The objective of the control system is to control the
level of Tank 2 considering changes in the reference and
disturbance signals. Virtual Reference Feedback Tuning
(VRFT) and Virtual Disturbance Feedback Tuning (VDFT)
were applied to design the gains of a PI controller

C(q, ρ) =
[
ρ1 ρ2

] [ q
q−1
1
q−1

]
.
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In order to apply both methods, two open-loop exper-
iments were run to collect data, where the sampling time
was Ts = 1 s. A step signal was applied to the input of
the system, and since the output presents noise the ex-
periment was repeated to use the instrumental variables
technique. In both experiments Valve 1 was opened from
40% to 50% while Valve 2 was kept constant at 80%. The
output of the first experiment was named y1(t) while the
output of second experiment was named y2(t). Both sig-
nals are presented in Fig. 4.

0 100 200 300 400 500 600 700 800 900 1000 1100
18

20
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24

26

28
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32

34

36
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y(
t)

 

 

y
1
(t)

y
2
(t)

Figure 4: Output signals of the pilot plant, considering two experi-
ments in open-loop, where Valve 1 is opened from 40% to 50%.

The VRFT method was then used to tune the gains of
the controller. The choice of the Reference Model was:

Td(q) =
0.015

q − 0.985
(17)

which has a settling time of approximately 260 samples
(to achieve 98% of the response) that is faster than the
open-loop settling time, which is close to 1000 samples.
Two sets of data were used in the VRFT method with
instrumental variables with filter L(q) = Td(q)(1− Td(z)),
and the following controller was obtained:

C(q, ρ̂V RIV ) =
[
2.799 −2.788

] [ q
q−1
1
q−1

]
. (18)

With this controller it is possible to approximate the re-
sponse of the closed-loop system for disturbances as

Q̂(q, ρ̂V RIV ) ≈ Td(q)

C(q, ρ̂V RIV )
=

0.0053591(q − 1)

(q − 0.9961)(q − 0.985)
. (19)

Also, Virtual Disturbance Feedback Tuning (VDFT)
was used with the same two sets of data. The choice of
the Disturbance Model was:

Qd(q) =
0.005(q − 1)

(q − 0.985)(q − 0.985)
. (20)

This Disturbance Model has a zero at 1 to ensure steady-
state disturbance rejection of constant signals and it presents

two poles at the same position of the Reference Model.
Gain 0.005 was chosen to provide a disturbance response
with half amplitude compared to the disturbance response
obtained with the VRFT controller (18). The following
controller was obtained using (10) and filterK(q) = Qd(q):

C(q, ρ̂V DIV ) =
[
5.1847 −5.1395

] [ q
q−1
1
q−1

]
. (21)

With this controller it is possible to approximate the
response of the closed-loop system for reference changes as

T̂ (q, ρ̂V DIV ) ≈ Qd(q)C(q, ρ̂V DIV ) =
0.025924(q − 0.9913)

(q − 0.985)2
.

(22)
Figure 5 (top) presents the closed-loop responses of the

system with both controllers for a step as reference signal
from 20 to 25 cm, compared to the reference model Td(q)
output and the estimated closed-loop model response ob-
tained with the VDFT controller and Qd(q). The figure
shows that the response of the system with the VRFT
controller is quite similar to the Reference Model. The
settling time of the response with the VDFT controller is
close to the settling time of VRFT controller but it gen-
erates a response with overshoot, as expected (22). Also,
the response of the VDFT controller is close to the ap-
proximate response computed above. Figure 5 (bottom)
presents the corresponding control signals for VRFT and
VDFT where it shows that VDFT produces signals with
larger magnitude for reference changes.

A similar analysis can be done concerning the distur-
bance occurrence. Figure 6 (top) presents the closed-loop
responses of Tank 1 with both controllers for a step as
disturbance signal close to t = 200, where Valve 2 was
opened from 80% to 100%. Observe that the response of
the system with the VDFT controller is quite similar to
the Disturbance Model response. The settling time with
the VRFT controller is much larger than the settling time
of VDFT controller and presents a larger amplitude. Also,
the response with VRFT is similar to the approximate dis-
turbance model (19) computed before. Figure 6 (bottom)
presents the corresponding control signals and shows that
VDFT controller responds a little faster than VRFT con-
troller, but with similar amplitude.

Both designed controllers reacted as expected. The
VRFT controller presents a reference response close to
the reference model’s, but it also presents a slow response
for disturbances. On the other hand, VDFT controller
presents disturbance response similar to the disturbance
model’s, but as expected, the reference response presents
overshoot and similar settling time compared to the refer-
ence model.

6. Conclusions

The article presented a one-shot data-driven control
method to be used in a Disturbance Model (DM) design,
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Figure 5: Closed-loop response for reference step from 20 to 25 cm.
Top figure: green line is the reference, black line is the output of
reference model, red line is the output with VRFT controller, blue
line is the output with VDFT controller and grey line is the approxi-
mate output computed before the experiment with VDTF controller.
Bottom figure: red line is control signal with VRFT controller and
blue line is control signal with VDFT controller.

instead of the commonly used Model Reference approach.
Inspired by the Virtual Reference Feedback Tuning method,
the proposed approach is based on a virtual disturbance
signal, obtained from a desired response considering that
the disturbance occurs in the input of the process. Thus,
the proposed methodology is named “Virtual Disturbance
Feedback Tuning” (VDFT). As it happens in the VRFT
approach, the controller design can be seen as an identi-
fication problem, which is solved through least squares if
the controller to be identified is linear in the parameters.
When signals are noise-free and the DM ideal controller be-
longs to the controller class, it is correctly identified with
the proposed formulation. When this is not the case, an
extra filter and instrumental variables are used to minimize
the bias of the estimate. Experimental results have shown
the efficiency of the proposed method in a real plant.
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Figure 6: Closed-loop response for disturbance where valve 2 was
opened from 80% to 100%. Top figure: green line is the reference,
black line is the output of disturbance model, blue line is the output
with VDFT controller, red line is the output with VRFT controller
and grey line is the approximate output computed before the experi-
ment with VRFT controller. Bottom figure: red line is control signal
with VRFT controller and blue line is control signal with VDFT con-
troller.
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