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Abstract— In this work a modified Resonant Controller is
proposed to deal with the tracking/rejection problem of periodic
signals robust to period variations and parametric uncertainties
in the plant. The control strategy is based on a resonant
structure in series with a notch filter, which will be responsible
to improve the robustness to period variation. A robust state
feedback controller is designed by solving a linear matrix
inequality (LMI) optimization problem guaranteeing the robust
stability of the closed loop system. A numerical example is
presented to illustrate the method.

I. INTRODUCTION

Applications such as optical disk drives [1], [2], active
filters [3] and nanomotion positioning systems [4] have been
attracting increasing attention in the literature since they are
examples of systems where the signals to be tracked/rejected
are periodic or that at least can be considered periodic in
a particular timespan. In some of these examples authors
must also consider the design of control systems capable to
maintain an acceptable level of performance in the presence
of parametric uncertainties or period variations.

Robust tracking/rejection under parametric uncertainty can
be guaranteed by control techniques based on the Internal
Model Principle (IMP) [5] such as repetitive and resonant
controllers. Both approaches employ controllers with reso-
nance peaks on the signal fundamental frequency and its
harmonics. In the resonant controller [6], the introduction
of a second order system in the control loop is required
to compensate each harmonic component, leading to a high
order controller and an excessive number of tunning param-
eters. The repetitive approach [7] employs a delay element
in a positive feedback loop to achieve infinite gain at the
desired fundamental frequency and its harmonics. Despite the
simple controller structure, ensuring closed-loop stability is
not trivial, especially in the Multiple-Input, Multiple-Output
(MIMO) case.

A point in common in IMP based controllers lies in the
fact that tracking performance is highly compromised when
the period (or frequency) of interest differs from the one
considered in the control design [8]. To illustrate this point
lets consider the repetitive controller, which is well known
to present a severe loss of performance for small period
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variations such as 5% or 10% of its nominal value [9]. To
mitigate this effect we can point out the control strategy
known as High Order Repetitive Controller also presented
in [9], where multiple memory loops were employed to
“enlarge” the high gain region around the nominal frequency
and its harmonics. The main drawback of the High Order
Repetitive Controller is the so called waterbed effect [10],
i.e. attenuation of disturbances around the fundamental fre-
quency and its multiples is improved, while disturbances or
noise at intermediary frequencies are amplified. Also, to the
best of our knowledge, this control technique can only be
applied to MIMO systems by assuming all signals (reference
and disturbances) are multiples of the same fundamental
frequency.

In this work, the ideas presented in the High Order Repeti-
tive Controller formulation will be extended to resonant con-
trollers by the series interconnection of a resonant structure
and a notch filter. In this case, the first is responsible to
guarantee perfect tracking at the nominal frequency while the
latter improves robustness to frequency variation. Based on
a state space formulation, the controller design is addressed
by the solution of an optimization problem subject to Linear
Matrix Inequality (LMI) constrains that guarantee the robust
stability of the closed loop system as well as a desired level
of transient performance. In addition, the proposed approach
is capable of ensuring tracking/rejection in MIMO systems
for references/disturbances with non-multiple period. A nu-
merical example will be considered to illustrate the proposed
method.

Notation: The ith component of a vector x is denoted by
x(i). A(i) represents the ith row of a matrix A ∈ Rn×n,
A(i, j) is the element located in the ith row and jth column
of A and A′ means its transpose. diag{A1, A2} is a block-
diagonal matrix obtained from A1 and A2, Im denotes the
m-order identity matrix and 0m×n is the m×n null matrix.
∗ represents symmetric block elements in a matrix.

II. PRELIMINARIES

A. Open Loop System

Consider the continuous-time system described by:

ẋ(t) = (A+ ∆A(t))x(t) +Bu(t) +Bdd(t)
y(t) = (C + ∆C(t))x(t)
e(t) = r(t)− y(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the
control input, y(t) ∈ Rp is the output, d(t) ∈ Rl is a
vector of disturbances, r(t) ∈ Rp is a reference vector to be
tracked and e(t) ∈ Rp is the output tracking error. Matrices



A, B, Bd and C are constant real matrices of appropriate
dimensions and suppose the pair (A,B) is controllable.

We also consider that uncertainty matrices ∆A(t) and
∆C(t) are defined by [11]:[

∆A(t)
∆C(t)

]
=

[
H1

H2

]
Ξ(t)E

where Ξ(t) is a time-varying matrix such that {Ξ(t) ∈
Rnu×nu ; Ξ(t)′Ξ(t) ≤ Inu

} and with H1, H2 and E being
known real matrices of appropriate dimensions. In this case
nu denotes the number of uncertain parameters.

B. Resonant Controller

A common approach to the tracking (rejection) of periodic
references (disturbances) is the so called resonant control
which is based on the IMP and adds resonance peaks
to the control transfer function at frequencies of interest.
According to this principle, it is well known that sinusoidal
periodic references with a frequency of ω0 will be perfectly
tracked, just as disturbances with the same frequency will
be perfectly rejected, if complex poles with frequency ω0

are replicated either in the control law or the plant itself. In
terms of Resonant Controllers this can e accomplished by
the introduction of

Gr(s) =
ω2

0

s2+ω2
0

(2)

in the control loop. Signals that are periodic but not pure
sinusoids may still be dealt with based on their Fourier series
expansion. In these cases, a pair of complex poles must be
added to the controller transfer function for each frequency
ωk, k = 1, 2, · · · of the expansion. For signals with infinite
harmonic content, a usual practice is to consider only the
M most significant harmonics at an expense of a residual
tracking error which decreases as M increases. Hence, (2)
can be rewritten as

Gmr(s) =
M∏
k=1

ω2
k

s2+ω2
k
. (3)

A problem occurs, however, if the periodic signal is of
varying frequency. When this is the case no guarantees can
be provided regarding the tracking or rejection of the signal if
(3) alone is implemented in the control law. In the following
sections we will adapt the resonant structure to increase its
robustness with respect to small frequency variations.

III. NOTCH-RESONANT CONTROLLER

A. Proposed Controller

Here we propose a modified Resonant Controller that
is able to deal with variations of the fundamental refer-
ence/disturbance frequency by applying simple loop-shaping
techniques. Inspired by the High Order Repetitive Control,
the proposed controller “enlarges” the high gain region of
the frequency response, adding robustness to small variations
around the nominal frequency of the periodic signal. The
above methodology is implemented through the addition of
a notch filter

Gn(s) =
s2+2ζzω0s+ω

2
0

s2+2ζpω0s+ω2
0

(4)

Fig. 1. Resonant controller and the proposed Notch-Resonant Controller
for different values of ζz and ζp = 0.001.

in series with (2), i.e.,

Gnr(s) =
s2+2ζzω0s+ω

2
0

s2+2ζpω0s+ω2
0
· ω2

0

s2+ω2
0

(5)

with ζp < ζz < 1. The notch filter by itself can be tuned to
introduce enough high gain in the controller transfer func-
tion to produce a satisfactory tracking performance, but its
cascade implementation with the resonant controller results
in two desirable effects: null tracking error for the nominal
frequency and gain reduction in high frequencies since the
controller roll off frequency is -40 dB/dec. Henceforth the
controller defined in (5) will be called Notch-Resonant
Controller. Based on this formulation, the original resonant
controller will be recovered for ζz = ζp.

Fig. 1 shows the Bode diagram of both (2) and (5) for
ω0 = 10 rad/s and different values of ζz . As seen from the
figure, the proposed controller adds robustness to variations
of the frequency of interest by the “enlargement” of the high
gain region of the bode plot as ζz increases. On the other
hand, ζp has the contrary effect as depicted in Fig. 2, when
the robustness is increased for smaller values of ζp. We can
also point out that there is no noticeable gain in reducing
this parameter below ζp = 0.01.

It is also worth mentioning that a controller described by
(6) can ensure perfect tracking and rejection for ramp-like
signals since they can be expressed as a periodic signals with
fundamental frequency ω0 = 0. Finally, relations (3) and (5)
can be combined to define a Notch-Resonant Controller with
multiple frequencies as follows

Gmnr(s) =
M∏
k=1

(
s2+2ζzωks+ω

2
k

s2+2ζpωks+ω2
k
· ω2

k

s2+ω2
k

)
(6)

which can be seen as a series interconnection of M Notch-
Resonant Controllers tuned at each frequency of interest. The
above controller is readily put in state space form for LMI
based design in the section that follows.

B. State space formulation

One may represent (4) with resonance peak at ωk in state
space form by

ẋnk(t) = Ankxnk(t) +Bnei(t)
ynk(t) = Cnkxnk(t) +Dnei(t)

(7)

where xnk(t) ∈ R2 is the notch state, ei(t) = ri(t) −
yi(t), i = 1, · · · , p is the i−th error channel and

Ank =

[
0 ωk
−ωk −2ζpωk

]
, Bn =

[
0
1

]
Cnk =

[
0 2ωk(ζz − ζp)

]
, Dn = 1.

In the same way, a resonant controller in (2) in series with
the notch filter will be represented by

ẋrk(t) = Arkxrk(t) +Brynk(t)
yrk(t) = Crxrk(t)

(8)



Fig. 2. Resonant controller and the proposed Notch-Resonant Controller
for different values of ζp and ζz = 0.1.

with

Ark =

[
0 ωk
−ωk 0

]
, Br =

[
0
1

]
, Cr =

[
ω0

0

]′
.

From both (7) and (8), it follows that (5) can be defined in
terms of the augmented state xk(t) =

[
xrk(t)′ xnk(t)′

]′ ∈
R4 as

ẋk(t) = Akxk(t) + B̄ei(t)
yk(t) = xk(t)

(9)

where

Ak =

[
Ark BrCnk
02×2 Ank

]
, B̄ =

[
BrDn

Bn

]
.

Consequently the parallel interconnection of M Notch-
Resonant controllers (see Fig. 3) with frequencies ωk, k =
1, 2, · · · ,M in (6) is represented in state space by

ẋmn(t) = Amnxmn(t) +Bmnei(t) (10)

where xmn(t) ∈ R4M and

Amn =


A1 04×4 · · · 04×4

04×4 A2 · · · 04×4
...

...
. . .

...
04×4 04×4 · · · AM

 , Bmnr =


B̄
B̄
...
B̄


Finally, the MIMO nature of the open loop plant must be

taken into account. Hence, to verify the IMP, the state space
controller (10) must be inserted on each output error channel,
resulting in

ẋc(t) = Acxc(t) +Bce(t) (11)

where xc(t) ∈ R4Mp and

Ac = diag{
p−tuple︷ ︸︸ ︷

Amn, Amn, . . . , Amn}

Bc = diag{
p−tuple︷ ︸︸ ︷

Bmn, Bmn, . . . , Bmn}

In this case, (11) is a 4Mp−dimensional equation where
matrices Anm and Bnm are repeated p times in a block
diagonal structure [12]. To simplify notation along the paper
we will consider nc = 4Mp.

The augmented state space readily follows by defining
xa(t) = [x(t)′ xc(t)

′]′ ∈ Rn+nc , giving rise to

ẋa(t) = (Aa + ∆Aa(t))xa(t) +Bau(t) +Bqq(t) (12)

where q(t) =
[
r(t)′ d(t)′

]′
and

Aa =

[
A 0n×nc

−BcC Ac

]
, ∆Aa(t) = HaΞ(t)Ea

Ha =

[
H1

−BcH2

]
, Ea =

[
E 0n×nc

]

Ba =

[
B

0nc×m

]
Bq =

[
0n×p Bd
Bc 0nc×l

]
We may now consider the control law as a linear combi-

nation of plant, resonant and notch filter states such that

u(t) = Kpx(t) +Kcxc(t) (13)

with Kc = [Kc1 Kc2 · · · Kcp] and Kci =
[Kr1i Kn1i Kr2i Kn2i · · · KrMi KnMi], i = 1, 2, · · · , p.
In this case, it follows that

u(t) =
[
Kp Kc

] [ x(t)
xc(t)

]
= Kxa(t). (14)

Applying (14) to (12), the closed loop system is given by

ẋa(t) = (Aa +BaK + ∆Aa(t))xa(t) +Bqq(t). (15)

Remark 1: When the problem at hand involves only pe-
riodic and step-like signals, the introduction of a double
integrator in the control loop as proposed in Section III-A
may lead to stabilization problems. The usual solution in this
case is to augment the controller state xmn(t) with a single
integrator state given by

ẋi(t) = ei(t), (16)

i.e. xmni(t) = [xmn(t)′ xi(t)
′]′ ∈ R4M+1. In the develop-

ments presented above, it suffices to replace xmn(t), Amn
and Bmn in (11) with xmni(t), diag{Amn, 0} and [B′mn 1]′,
respectively.

C. Stability Result

The first step towards our stability result is to deal with
the vector of exogenous signals q(t). Note that closed
loop system (15) is linear and therefore its robust internal
(asymptotic) stability also implies Bounded Input, Bounded
Output (BIBO) stability. Thus, for stabilization purposes the
term related to external signals q(t) in (15) can be ignored,
resulting in the following stabilization problem:

Problem 1: Determine a gain K such that

ẋa(t) = (Aa +BaK + ∆Aa(t))xa(t) (17)

is robustly asymptotically stable.
It is also important to point out that while the solution

of Problem 1 deals only with the stabilization problem, the
tracking/rejection problem is implicitly taken into account by
the introduction of the resonant structure in the control loop.
Hence, it leaves room for additional performance criteria
such as:

PC1: Minimize the cost function

J(z(t)) := ‖z(t)‖22 =

∫ ∞
0

z(t)′z(t)dt (18)

where z(t) is a performance output defined by

z(t) := Cpxa(t) +Dpu(t) (19)

with Cp, Dp being constant matrices with appro-
priate dimensions. By minimizing this cost function
it is possible to penalize the control effort necessary



Fig. 3. Closed loop system for the i−th error channel.

to track/reject the periodic signal or the energy
associated to augmented system states.

PC2: Ensure a given exponential decay rate α for the
system trajectory such as:

‖xa(t)‖ ≤ β‖xa(0)‖e−αt, for t > 0 (20)

where β is some positive scalar [13]. This restric-
tion is directly related to the closed loop system
transient response.

The following theorem is presented to solve Problem 1
and address the two criteria above:

Theorem 1: Suppose there exist a symmetric and posi-
tive definite matrix Q ∈ R(n+nc)×(n+nc), a matrix Y ∈
Rm×(n+nc) and the positive scalars ν and λ satisfyingΛ(Q,Y ) QE′a Y ′D′p +QC ′p

? −νInu
0nu×m

? ? −λIm

 < 0 (21)

where Λ(Q,Y ) = AaQ+Q′A′a+BaY +Y ′B′a+νHaH
′
a+

2αQ. Then, the closed-loop system in (17) with K = Y Q−1

is asymptotically stable with decay rate α and cost function
(18) satisfies ‖z(t)‖22 ≤ λxa(0)′Q−1xa(0), t ≥ 0. �

The proof of Theorem 1 follows the same ideas presented
in [13] and therefore will be omitted due to space constraints.

Note that for a given α, condition (21) is an LMI and,
therefore, we can obtain controller gains that satisfy perfor-
mance criteria PC1 and PC2 above by the solution of the
following optimization problem:

min
Q,Y,ν,λ

λ

subject to (21).
(22)

IV. NUMERICAL EXAMPLES

The numerical example considered is a MIMO plant
borrowed from [14] (disregarding the saturation nonlinearity)
whose dynamic matrices are given by

A =


0 10 0 1
−100 −30 0 0

0 0 −37 1
0 0 0 −19

 , B =


0 −51
17 0
0 −1
−1 1



Bd =


−1 7
11 0
3 23
1 0

 , C =

[
10 20 0 0
0 10 0 0

]
, H1 =


0
0
25
0


H2 =

[
5
0

]
, E =

[
0 0 1 0

]
For simulation purposes both references are considered

step-like signals with amplitude r1 = 10 and r2 = 5.

Disturbance d1(t) is a sinusoidal signal with frequency
ωd1 = 2π

√
2/2, amplitude d1 = 10 and assumes a value

different from zero for t ≥ 11.2s. In the same manner,
disturbance d2(t) is a sinusoidal signal with frequency ωd2 =
2π
√

5/5, amplitude d2 = 5 and starts to act when t ≥ 22.4s.
Finally, Ξ(t) is assumed to be equal to zero for t < 42s and
unitary otherwise.

Hence, based on the IMP, to ensure the perfect rejection of
d1(t) and d2(t) it will be necessary to introduce a multiple
resonant controller with frequencies ωd1 and ωd2 at each
error channel. Also, an integrator is required to follow the
step-like references. From the reasoning presented in Section
II-B, the notch filter parameters necessary to implement the
proposed approach were set to ξz = 0.99 and ξp = 0.01.
With all parameters properly defined, controller gains were
obtained from the solution of optimization problem (22) with
α = 1 and null matrices Cp and Dp.

In Fig. 4 the tracking error for each error channel when
the disturbance frequencies are 5% greater than nominal
values ωd1 and ωd2 is depicted. When no disturbance is
acting (0 ≤ t < 11.2s) the perfect reference tracking is
achieved for both controllers. When disturbance d1(t) starts
to act (t = 11.2s), the maximum tracking error in steady
state for the Resonant Controller is around 2.3% while the
one associated to the Notch-Resonant remains under 0.1%.
When both disturbances are acting, the tracking error for
the resonant jumps to 3.4% while for the notch-resonant it
remains at 0.1%. Finally, a variation on the plant matrices
results in a tracking error of 0.7% for the proposed controller
which is 22 times smaller than the 16% obtained with the
Resonant Controller. In Fig. 5, the simulated outputs and con-
trol signals are presented, where it is clear that the proposed
controller achieves an improved tracking performance with
almost the same control effort as the resonant. Our final result
is presented in Table I where we compare the maximum
steady-state tracking error associated with variations on the
disturbance frequencies from 5% to 50%. For differences
under 20% the proposed approach is capable to maintain
the tracking error under 10% while the Resonant Controller
exhibits error around 68%. For variations of 50% the tracking
performance is heavily compromised for both controllers.

TABLE I
MAXIMUM STEADY-STATE TRACKING ERROR ASSOCIATED TO

VARIATIONS ON THE DISTURBANCE FREQUENCY.

Resonant Notch-Resonant
Freq. dev. e1max[%] e2max[%] e1max[%] e2max[%]

5% 6 16 0.2 0.7
10% 12 36 0.8 2.5
20% 24 68 3 9
50% 44 96 14 38



Fig. 5. Output and control signals for disturbances with frequency 5% greater than nominal values ωd1 and ωd2 .

Fig. 4. Tracking error for disturbances with frequency 5% greater than
nominal values ωd1 and ωd2 .

V. CONCLUSION

In this work we developed a control structure that com-
bined a Resonant Controller in series with a notch filter to
improve the tracking performance under period variation.
As presented in the Repetitive Control literature, the main
idea was to enlarge the high gain region around the nominal
resonance frequency. Notch filter parameters were deter-
mined from an analysis based on the controller frequency
response, while the robust stability of the closed loop system
was guaranteed by LMI conditions. The numerical example
was a MIMO plant with step-like references and sinusoidal
disturbances composed of non-multiple frequencies. It was
possible to conclude that the proposed approach maintained
the tracking error under 10% for frequency variations around
20% of its nominal value.

For future work we can point out the experimental vali-
dation of the proposed method in a rotating machine and a
direct comparison with High Order Repetitive Controllers in
terms of tracking performance, noise attenuation and mini-
mum hardware requirements to implement the techniques.
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