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Abstract

This paper addresses the control of linear systems subject to both sensor and actuator saturations
and additive L2-bounded disturbances. Supposing that only the output of the linear plant is measur-
able, the synthesis of stabilizing output feedback dynamic controllers, allowing to ensure the internal
closed-loop stability and the finite L2-gain stabilization, is considered. In this case, it is shown that the
closed-loop system presents a nested saturation term. Therefore, based on the use of some modified
sector conditions and appropriate variable changes, synthesis conditions in a ”quasi”-LMI form are
stated in both regional (local) as well as global stability contexts. Different LMI-based optimization
problems for computing a controller in order to maximize the disturbance tolerance, the disturbance
rejection or the region of stability of the closed-loop system are proposed.

1 Introduction

In practical control systems it is well-known that physical, safety or technological constraints generally
induce that the actuators and sensors cannot provide unlimited amplitude signals. In this case, the
outputs of both sensors and actuators can saturate. In particular, while the actuators outputs are
saturated, the controlled plant operates in open-loop. On the other hand, the saturation of the sensor
output induces an incorrect action of the controller, since the actual state or output of the plant is
no longer precisely measured. Neglecting actuator and sensor limitations can therefore be source of
undesirable or even catastrophic behaviors for the closed-loop system (as the lost of the closed-loop
stability). Combat aircrafts and launchers are examples of systems that illustrate the control difficulties
due to these major constraints [22], [24].

During the recent past years, the control of linear systems subject to amplitude constrained actuators
have been extensively studied in the literature (see for instance [2], [27], [26], [16], [13] and references
therein for a general overview). In particular, we can identify works concerning stability analysis and/or
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stabilization [18], [14], [12], [1], anti-windup synthesis [33], [30] and also the simultaneous synthesis of
dynamic output feedback controllers and static anti-windup loops [23], [21], [10], [6].

On the other hand, few results concern the case of sensor saturation. We can cite, for instance,
[19], where the effects of sensor saturation on plant observability are studied, [20], in which the global
stabilization of a linear SISO system is carried out via the use of dead beat controllers, [3], where the
design of an output H∞ feedback controller for linear systems with sensor nonlinearity is based in the
use of a classical sector condition, and also [31], where an anti-windup strategy is proposed considering
the guarantee of the global stability of the closed-loop system and the optimization of an L2 performance
criterion. Finally, we can cite [15] in which results addressing the design of a saturated dynamic controller
for a system subject to sensor saturation is proposed in a global context of stability.

Since in practice sensors and actuators present amplitude constraints (as it is the case, for instance, in
aerospace applications and vibration control), techniques considering the stabilization taking into account
simultaneously actuator and sensor saturation are of major interest. However, if few results are available
on systems with sensor saturation, still less results concern the case of systems with both actuator and
sensor limitations. In [7], adaptive integral control design for linear systems with actuator and sensor
nonlinearities is addressed by considering the asymptotic stability of the open-loop. In [9], different
methods of analysis and synthesis are presented, in particular relative to PID controllers. On the other
hand, the methods proposed in [7] and [9] do not offer a systematic way to deal with the problem.

This paper aims at filling this gap. The paper focus on the problem of controlling linear systems
with both sensor and actuator subject to saturation. Moreover, the system is considered to be subject
to additive L2-bounded disturbances. This work can be seen as an extension of the conference paper [8],
where preliminary results have been stated for free disturbance systems. Supposing that only the output
of the linear plant is measurable, the synthesis of output feedback dynamic controllers satisfying both
closed-loop stability and performance requirements is provided. More precisely, the design objective is
to ensure the internal closed-loop stability (when the system is disturbance free) and the finite L2-gain
stabilization (in presence of disturbance). It is shown that, in this case, the closed-loop system presents a
nested saturation term. Therefore, based on the use of some modified sector conditions and appropriate
variable changes, synthesis conditions in a ”quasi”-LMI form are stated in both regional (local) as well as
global contexts. Depending of the regional or global contexts, different LMI-based optimization problems
for computing a controller are proposed in order to maximize the disturbance tolerance, the disturbance
rejection or the region of stability of the closed-loop system.

Comparing with previous approaches, it should be emphasized that the proposed approach in the
paper complements and improves the techniques developed in [10], [6], [32], where only actuator saturation
are considered, and in [3], where only sensor saturation is considered. Moreover, differently from [7] and
[9], the approach developed in the paper provides constructive conditions and a systematic procedure to
compute the controller.

The paper is organized as follows. The addressed problem is formally stated in section 2. Some pre-
liminaries, needed to the statement of the main results are given in section 3. In particular, some modified
sector conditions regarding nested deadzone nonlinearities are presented. Section 4 is dedicated to the
main results of the paper, concerning both regional and global stabilization conditions. Computational
issues are discussed in section 5. In particular, LMI-based optimization problems are proposed in order
to compute the controller from the stated main results. Numerical examples, illustrating the application
of the approach, are presented in section 6. The paper ends by a conclusion giving some perspectives.

Notation. For any vector x ∈ ℜn, x ≽ 0 means that all components of x denoted x(i) are nonnegative.
For two vectors x, y ∈ ℜn, the notation x ≽ y means that x(i) − y(i) ≥ 0, for all i = 1, ..., n. The elements
of a matrix A ∈ ℜm×n are denoted by A(i,j), i = 1, ...,m, j = 1, ..., n. A(i) denotes the ith row of matrix

A and A(j) denotes the jth column of matrix A. For two symmetric matrices, A and B, A > B means
that A−B is positive definite. A′ denotes the transpose of A. He{A} = A′+A. Diag(x; y; ...) denotes the
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diagonal matrix obtained from vectors or matrices x, y, .... The identity matrix of order n is denoted by In.
The null matrix of any order is simply denoted by 0. Furthermore, in the case of partitioned symmetric
matrices, the symbol • denotes symmetric blocks. For v ∈ ℜm, satv0(v) : ℜm → ℜm denotes the
classical symmetric saturation function defined as (satv0(v))(i) = satv0(v(i)) = sign(v(i))min(v0(i), |v(i)|),
∀i = 1, ...,m, where v0(i) > 0 denotes the ith amplitude bound.

2 Problem statement

Consider the following continuous-time system:

ẋ(t) = Ax(t) + Bu(t) + Bww(t)
y(t) = saty0(Cx(t))
u(t) = satu0(yc(t))
z(t) = Czx(t) + Dzu(t)

(1)

where x ∈ ℜn is the state, u ∈ ℜm is the plant control input, y ∈ ℜp is the measured output and yc ∈ ℜm

is the input of the actuator, z ∈ ℜr is the regulated output and w ∈ ℜq is a disturbance signal. A, B,
Bw, C, Cz and Dz are constant matrices of appropriate dimensions. Due to physical limitations both the
actuator and sensor outputs are supposed to be bounded in amplitude. Hence, both u(t) and y(t) are
saturating signals, with bounds given respectively by the componentwise vectors u0 ∈ ℜm and y0 ∈ ℜp.
Pairs (A,B) and (C,A) are supposed stabilizable and detectable, respectively. The disturbance vector w
is assumed to be limited in energy, that is, w(t) ∈ L2 and for some scalar δ, 0 ≤ 1

δ < ∞, it follows that:

∥w∥2
2 =

∫ ∞

0
w′(t)w(t)dt ≤

1

δ
(2)

The problem considered in this paper regards the stabilization of system (1) through a dynamic
output feedback compensator, described as follows:

ẋc(t) = Acxc(t) + Bcy(t) + Ec(satu0(yc(t)) − yc(t))
= Acxc(t) + Bcsaty0(Cx(t)) + Ec(satu0(yc(t)) − yc(t))

yc(t) = Ccxc(t) + Dcy(t)
= Ccxc(t) + Dcsaty0(Cx(t))

(3)

where xc ∈ ℜnc is the controller state, y ∈ ℜp is the controller input and yc ∈ ℜm is the controller output.
Ac, Bc, Cc, Dc and Ec are matrices of appropriate dimensions. Ec corresponds to a static anti-windup
gain [11].

The connection between system (1) and the controller (3), leads to the following closed-loop system:

ẋ(t) = Ax(t) + Bsatu0(Ccxc(t) + Dcsaty0(Cx(t))) + Bww(t)
ẋc(t) = Acxc(t) + Bcsaty0(Cx(t)) + Ec(satu0(yc(t)) − yc(t))
yc(t) = Ccxc(t) + Dcsaty0(Cx(t))
z(t) = Czx(t) + Dzsatu0(Ccxc(t) + Dcsaty0(Cx(t)))

(4)

It is worth to notice that due to the sensor saturation, the resulting closed-loop system presents a nested
saturation [29], [28].

Considering w = 0, the basin of attraction of system (4), denoted Ba, is defined as the set of all
(x, xc) ∈ ℜn×ℜnc such that for (x(0), xc(0)) ∈ Ba the corresponding trajectory converges asymptotically
to the origin. In particular, when the global stability of the system is ensured the basin of attraction
corresponds to the whole state space.

In this paper, we focus on the following problems regarding system (4):
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1. Tolerance and disturbance rejection (w ̸= 0).
The objective in this case consists in ensuring that the trajectories of the system are bounded for
any disturbance satisfying (2) and, in addition, in providing an upper-bound for the L2-gain from
the disturbance w to the regulated output z. In other words, we want to ensure input-to-state and
input-to-output L2-stability.

2. Internal Stabilization.
If w(t) = 0, ∀t > t1 ≥ 0, it should be ensured that the corresponding trajectories converge asymptot-
ically to the origin. This means that for disturbances satisfying (2), the trajectories never leave the
region of attraction of the closed-loop system. On the other hand, considering the free-disturbance
case (w = 0), a relevant problem consists in designing the controller in order to maximize the region
of attraction of the closed-loop system or, when possible, to ensure the global asymptotic stability
of the origin. However, since in the general case the exact analytical characterization of the basin
of attraction is not possible, we will be interested in maximizing estimates of the basin of attraction
[17].

Regarding the problems above described, the design of the controller can be oriented in order to
maximize the disturbance tolerance, the disturbance rejection or the region where the asymptotic stability
of the closed-loop system is ensured.

3 Preliminaries

Let us define the following augmented vector

ξ =

(
x
xc

)
∈ ℜn+nc (5)

and the following matrices

A =

(
A + BDcC BCc

BcC Ac

)
; Bu =

(
B
Ec

)
Bw =

(
Bw

0

)

By =

(
BDc

Bc

)
; Cy =

(
C 0

)

C =
(

DcC Cc

)
; D = Dc

Cz =
(

Cz + DzDcC DzCc

)
; Dzy = DzDc ; Dzu = Dz

(6)

From (5) and (6), the closed-loop system can be written as:

ξ̇(t) = Aξ(t) + Buφu0(t) + Byφy0(t) + Bww(t)
yc(t) = Cξ(t) + Dφy0(t)
z(t) = Czξ(t) + Dzuφu0(t) + Dzyφy0(t)

(7)

with nonlinearities φy0 and φu0 defined by

φy0(t) = saty0(Cyξ(t)) − Cyξ(t)
φu0(t) = satu0(Cξ(t) + Dφy0(t)) − (Cξ(t) + Dφy0(t))

(8)

The nonlinearities φy0 and φu0 correspond to decentralized vector valued dead-zone functions. It
should be noticed that φu0 depends on φy0 .

Consider now matrices G ∈ ℜp×(n+nc), H1 ∈ ℜm×(n+nc) and H2 ∈ ℜm×p and define the following
polyhedral sets:

S(y0) = {ξ ∈ ℜn+nc;−y0 ≼ (Cy − G)ξ ≼ y0} (9)
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S(u0) = {ξ ∈ ℜn+nc,φy0 ∈ ℜp;−u0 ≼ (C − H1)ξ + (D − H2)φy0 ≼ u0} (10)

The nonlinearities φy0 and φu0 verify the following properties [11], [29].

Property 1 If ξ belongs to S(y0), then

φ′
y0

Ty(φy0 + Gξ) ≤ 0 (11)

for any diagonal positive definite matrix Ty ∈ ℜp×p.

Property 2 If ξ and φy0 belong to S(u0), then

φ′
u0

Tu(φu0 + H1ξ + H2φy0) ≤ 0 (12)

for any diagonal positive definite matrix Tu ∈ ℜm×m.

Define now an ellipsoidal set

E(P, δ−1) = {ξ ∈ ℜn+nc; ξ′P ξ ≤ δ−1} (13)

with P = P ′ > 0 and δ > 0.

Lemma 1 If there exist a diagonal positive definite matrix Ty ∈ ℜp×p such that the following linear
matrix inequality are satisfied

(
P C′

y(i) − G′
(i)

• δy2
0(i)

)

≥ 0, i = 1, ..., p (14)

⎛

⎜
⎝

P G′Ty C′
(i) − H ′

1(i)

• 2Ty D′
(i) − H ′

2(i)

• • δu2
0(i)

⎞

⎟
⎠ ≥ 0, i = 1, ...,m (15)

then the ellipsoidal set E(P, δ−1) is contained in S(u0) ∩ S(y0).

Proof. It follows straightforwardly that (14) implies that E(P, δ−1) ⊂ S(y0). In this case, from Property
1, it follows that E(P, δ−1) ⊂ S(u0) ∩ S(y0), if

(
ξ

φy0

)′

(Ω −

(
Γ′

(i)

Θ′
(i)

)
1

δu2
0(i)

(
Γ(i) Θ(i)

)
)

(
ξ

φy0

)
≥ 0, ∀i = 1, . . . ,m

∀ξ,φy0 such that 2φ′
y0

Ty(φy0 + Gξ) ≤ 0

(16)

where Ω =

(
P 0
0 0

)
, Γ(i) = C(i)−H1(i) and Θ1(i) = D(i)−H2(i). Using the S-procedure and the Schur’s

complement, it follows that (16) is satisfied if (15) holds.

4 Main results

In this paper, only the design of a full order dynamic output controller is investigated. Hence, the results
developed in the sequel hold for nc = n, and therefore the state ξ of the closed-loop system (7) is an
element of ℜ2n.
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4.1 Local Stabilization

Theorem 1 If there exist positive definite symmetric matrices X ∈ ℜn×n, Y ∈ ℜn×n, positive definite
diagonal matrices Su ∈ ℜm×m, Sy ∈ ℜp×p and matrices Z ∈ ℜn×n, L ∈ ℜm×n, F ∈ ℜn×p, D ∈
ℜm×p, W1 ∈ ℜm×n, W2 ∈ ℜm×n, W3 ∈ ℜp×n, W4 ∈ ℜp×n, R ∈ ℜn×m, Q ∈ ℜm×p and a scalar γ
satisfying

⎛

⎜⎜⎜⎜⎜⎜
⎝

He{AY + BL} Z BSu − W ′
1 BDSy − W ′

3 Bw Y C ′
z + L′D′

z

• He{XA + FC} R − W ′
2 FSy − W ′

4 XBw C ′
z + C ′D′D′

z

• • −2Su −Q 0 SuD′
z

• • • −2Sy 0 SyD′D′
z

• • • • −Iq 0
• • • • • −γIr

⎞

⎟⎟⎟⎟⎟⎟
⎠

< 0 (17)

⎛

⎜
⎝

Y In Y C ′
(i) − W ′

3(i)

• X C ′
(i) − W ′

4(i)

• • δy2
0(i)

⎞

⎟
⎠ ≥ 0, i = 1, ..., p (18)

⎛

⎜⎜⎜
⎝

Y In W ′
3 L′

(i) − W ′
1(i)

• X W ′
4 C ′D′

(i) − W ′
2(i)

• • 2Sy SyD′
(i) − Q′

(i)

• • • δu2
0(i)

⎞

⎟⎟⎟
⎠

≥ 0, i = 1, ...,m (19)

then, considering ξ(0) = 0, the controller (3) with

Dc = D
Ec = U−1(R − XBSu)S−1

u

Cc = (L − DcCY )(V ′)−1

Bc = U−1(F − XBDc)
Ac = U−1(Z ′ − (A + BDcC)′ − XAY − XBL − UBcCY )(V ′)−1

(20)

where matrices U and V verify UV ′ = In − XY , is such that

1. when w ̸= 0

a. the closed-loop trajectories remain bounded in the set E(P, δ−1) with

P =

(
X U
U ′ X̂

)
(21)

b. ∥z∥2
2 < γ∥w∥2

2.

2. if w(t) = 0, ∀t > t1 ≥ 0, ξ(t) converges asymptotically to the origin, i.e. E(P, δ−1) is included in
the basin of attraction of the closed-loop system (4) and it is a contractive set.

Proof. Let V (t) = ξ(t)′P ξ(t) be a candidate Lyapunov function and let V̇ (t) be its time-derivative along
system (7) (or (4)) trajectories. Define now J (t) = V̇ (t)−w′(t)w(t)+ 1

γ z′(t)z(t). If J (t) < 0, one obtains

that
∫ T
0 J (t)dt = V (T ) − V (0) −

∫ T
0 w′(t)w(t)dt + 1

γ

∫ T
0 z′(t)z(t)dt < 0, ∀ T . Hence, it follows that:

• since ξ(0) is supposed to be zero, V (0) = 0 and ξ(T )′P ξ(T ) = V (T ) < ∥w∥2
2 ≤ δ−1, ∀T > 0, i.e.

the trajectories of the system do not leave the set E(P, δ−1) for w(t) satisfying (2);
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• for T → ∞, ∥z∥2
2 < γ∥w∥2

2;

• if w(t) = 0, ∀t > t1 ≥ 0, then V̇ (t) < − 1
γ z′(t)z(t) < 0, which ensures that ξ(t) → 0 as t → ∞.

Provided that ξ(t) ∈ S(y0) and (ξ(t),φy0(t)) ∈ S(u0) one obtains that

J (t) ≤ J (t) − 2φ′
y0

(t)Ty(φy0(t) + Gξ(t)) − 2φ′
u0

(t)Tu(φu0(t) + H1ξ(t) + H2φy0(t)) = µ(t)′Ξµ(t)

with µ(t) =
(

ξ(t)′ φu0(t)
′ φy0(t)

′ w(t)′
)′

and

Ξ =

⎛

⎜⎜
⎝

A′P + PA PBu − H ′
1Tu PBy − G′Ty PBw

• −2Tu −TuH2 0
• • −2Ty 0
• • • −Iq

⎞

⎟⎟
⎠+

1

γ

⎛

⎜⎜
⎝

C′
z

D′
zu

D′
zy

0

⎞

⎟⎟
⎠
(

Cz Dzu Dzy 0
)

(22)

Define

P =

(
X U
U ′ X̂

)
; P−1 =

(
Y V
V ′ Ŷ

)
(23)

where X ∈ ℜn×n, Y ∈ ℜn×n, X̂ ∈ ℜn×n, Ŷ ∈ ℜn×n are positive definite symmetric matrices and U, V
matrices of appropriate dimensions. Thus, it follows:

XY + UV ′ = In ; U ′V + X̂Ŷ = In

U ′Y + X̂V ′ = 0 ; XV + UŶ = 0

Define now the matrix [25]:

J =

(
Y V
In 0

)

Note now that, from condition (18) and (19), it follows that In − XY is nonsingular, which implies
that is always possible to compute square and nonsingular matrices V and U verifying the equation
UV ′ = In − XY . This fact ensures that J is nonsingular.

Applying Schur’s complement in Ξ < 0, with Ξ given by (22), and pre and post-multiplying (22)
respectively by Diag(J ;Su;Sy; Iq; Ir) and Diag(J ′;Su;Sy; Iq; Ir) with Sy = T−1

y and Su = T−1
u , one gets:

⎛

⎜⎜⎜⎜
⎝

JA′PJ ′ + JPAJ ′ JPBuSu − JH ′
1 JPBySy − JG′ JPBw JC′

z

• −2Su −H2Sy 0 SuD′
zu

• • −2Sy 0 SyD′
zy

• • • −Iq 0
• • • • −γIr

⎞

⎟⎟⎟⎟
⎠

< 0 (24)

Partitioning matrices H1 and G as H1 =
(

H11 H12
)

and G =
(

G1 G2
)
, and considering the

following change of variables

L = DcCY + CcV ′, F = XBDc + UBc, M = V A′
cU

′,
Z = M + A + BDcC + Y A′X + L′B′X + Y C ′B′

cU
′,

R = XBSu + UEcSu, D = Dc,
W1 = H11Y + H12V ′, W2 = H11

W3 = G1Y + G2V ′, W4 = G1,

it follows that:

JA
′PJ ′ =

(
Y A′ + L′B′ Z − (A + BDcC)

(A + BDcC)′ A′X + C ′F ′

)
; JPBuSu =

(
BSu

R

)
; JPBySy =

(
BDSy

FSy

)
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JH ′
1 =

(
W ′

1
W ′

2

)
; JG′ =

(
W ′

3
W ′

4

)
; JPBw =

(
Bw

XBw

)
; JC

′
z =

(
Y C ′

z + L′D′
z

C ′
z + C ′D′D′

z

)
; H2Sy = Q

SuD
′
zu = SuD′

z ; SyD
′
zy = SyD

′D′
z

Hence, since J , Sy and Su are nonsingular, it follows that if (17) is verified, J (t) < 0 holds with the
matrices Ac, Bc, Cc, Dc and Ec defined as in (20), provided that ξ(t) ∈ S(y0) and (ξ(t),φy0(t)) ∈ S(u0).

Consider now the set E(P, δ−1), defined in (13). Pre and post-multiplying inequalities (15) respec-
tively by Diag(J ;Sy ; 1) and Diag(J ′;Sy; 1), pre and post-multiplying inequalities (14) respectively by
Diag(J ; 1) and Diag(J ′; 1), and since

JPJ ′ =

(
Y In

In X

)
, JC

′ =

(
L′

C ′D′

)
,

it follows, from Lemma 1, that the satisfaction of relations (18) and (19) ensures that E(P, δ−1) ⊂
S(u0) ∩ S(y0). Thus, if relations (17), (18) and (19) are satisfied, one effectively obtains J (t) < 0,
∀ξ(t) ∈ E(P, δ−1), which completes the proof.

Remark 1 In the case of a non-null initial condition ξ(0), a positive scalar β has to be considered in
order to ensure that the closed-loop trajectories remain bounded in E(P,β +δ−1), ∀ξ(0) ∈ E(P,β). Hence,
E(P,β) will be seen as a set of admissible initial conditions. From this, there clearly appears a trade-off
between the size of the set of admissible conditions (given basically by β), the size of the region of stability
(depending on β + δ−1) and the bound on the admissible disturbance (given by δ). Furthermore, the finite
L2-gain from w to z will present a bias term and will read:

∥z∥2
2 ≤ γ∥w∥2

2 + γξ(0)′P ξ(0) ≤ γ(||w||22 + β).

A detailed discussion about this case can be found in [4], where the stabilization via state feedback of
systems presenting only actuator saturation is considered.

4.2 Global stabilization

The results of the previous section can be adapted in order to provide global stabilizing conditions,
applicable when the open-loop system is asymptotically stable. In this case, it can be ensured that the
trajectories of the closed-loop system are bounded for any w(t) ∈ L2. Moreover, the origin of the system
is ensured to be globally asymptotically stable.

Corollary 1 If there exist positive definite symmetric matrices X ∈ ℜn×n, Y ∈ ℜn×n, positive definite
diagonal matrices Su ∈ ℜm×m, Sy ∈ ℜp×p and matrices Z ∈ ℜn×n, L ∈ ℜm×n, F ∈ ℜn×p, D ∈ ℜm×p

and a scalar γ satisfying

⎛

⎜⎜⎜⎜⎜⎜
⎝

He{AY + BL} Z BSu − L′ BDSy − Y C ′ Bw Y C ′
z + L′D′

z

• He{XA + FC} R − C ′D′ FSy − C ′ XBw C ′
z + C ′D′D′

z

• • −2Su −DSy 0 SuD′
z

• • • −2Sy 0 SyD′D′
z

• • • • −Iq 0
• • • • • −γIr

⎞

⎟⎟⎟⎟⎟⎟
⎠

< 0 (25)

(
Y I
• X

)
> 0 (26)
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then the controller (3) with

Dc = D
Ec = U−1(R − XBSu)S−1

u

Cc = (L − DcCY )(V ′)−1

Bc = U−1(F − XBDc)
Ac = U−1(Z ′ − (A + BDcC)′ − XAY − XBL − UBcCY )(V ′)−1

(27)

where matrices U and V verify UV ′ = In − XY , is such that the origin of the closed-loop system (4) is
such that:

1. when w ̸= 0

a. the closed-loop trajectories remain bounded for any w(t) ∈ L2 and any initial conditions.

b. ∥z∥2
2 < γ∥w∥2

2 + γξ(0)′P ξ(0).

2. if w(t) = 0, ∀t > t1 ≥ 0, ξ(t) converges asymptotically to the origin, i.e., the origin is globally
asymptotically stable.

Proof. Considering H1 = C, H2 = D = Dc = D and G = Cy, then it follows that:

H11 = DcC;H12 = Cc;G1 = C;G2 = 0
W1 = L;W2 = DC;W3 = CY ;W4 = C;Q = DSy

From this, the proof mimics the one of Theorem 1. Note that in this case the relations (11) and (12) are
globally satisfied.

5 Computational Issues

The conditions obtained in the previous section can be used to find the matrices of the dynamic controller
(3) considering, for instance, the following optimization problems.

5.1 Maximization of the Disturbance Tolerance

The idea consists in maximizing the bound on the disturbance, for which we can ensure that the system
trajectories remain bounded. This can be accomplished by the following optimization problem.

min δ
subject to (17), (18) and (19)

(28)

Note that, in this case, we are not interested in the value of γ. Indeed, γ will assume a finite value to
ensure that (17) is verified.

5.2 Maximization of the Disturbance Rejection

For an a priori given bound on the L2 norm of the admissible disturbances (given by 1
δ ), the idea

consists in minimizing the upper bound for the L2-gain of from w(t) to z(t). This can be obtained from
the solution of the following optimization problem:

min γ
subject to (17), (18) and (19) (or (25) and (26))

(29)
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5.3 Maximization of the Region of Stability

We consider here the free-disturbance case, i.e. w = 0. The synthesis objective regards therefore the
determination of a controller which leads to a stability region E(P, δ−1) as large as possible, among all
possible solutions for the inequalities of Theorem 1. Note that E(P, δ−1) can be seen as an estimate
of the region of attraction, and, in this case, the maximization of E(P, δ−1) implicitly addresses the
maximization of the region of attraction of the closed-loop system. Since w = 0, the relation (17) can be
replaced by

⎛

⎜⎜
⎝

He{AY + BL} Z BSu − W ′
1 BDSy − W ′

3

• He{XA + FC} R − W ′
2 FSy − W ′

4

• • −2Su −Q
• • • −2Sy

⎞

⎟⎟
⎠ < 0 (30)

which ensures that V̇ (t) < 0.
For a sake of simplicity, in this case, we set δ = 1. The volume is a possible measure of how large

E(P, 1) is [16]. This volume is proportional to det(P−1) with P−1 given in (23). A way to indirectly
maximize the volume of the set E(P, 1) is to minimize the trace of P which can be written as

trace(P ) = trace(X) + trace(X̂)

From the definition of P and P−1, we can deduce that

X̂ = U ′(X − Y −1)−1U

and then minimize trace(P ) can be done by minimizing

trace(X) + ρ

where ρ is such that
X̂ ≤ ρIn

From the expression of X̂, the previous inequality is equivalent to

⎛

⎝
ρIn U ′ 0
U X In

0 In Y

⎞

⎠ ≥ 0 (31)

Note that in this last inequality, the matrix U appears. Following the steps of the proof of Theorem
1, we can note that matrix U is a degree of freedom related to the controller realization. The previous
inequality connects matrices X, Y and U and its role is to select among all the possible solutions, the
one enlarging the region of stability in the sense previously defined. In order to ensure that matrix U is
nonsingular, we also consider the following constraint

U + U ′ > 0 (32)

Hence, a solution to the problem of computing the controller in order to enlarge the basin of attraction
of the closed-loop system can be indirectly addressed by solving the following optimization problem:

min trace(X) + ρ
subject to (30), (18), (19), (31), (32)

(33)
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Remark 2 The optimization problems proposed above are not convex due to the products DSy and FSy

appearing in relations (17) and (19). Note, however, that Sy ∈ ℜp×p is a diagonal positive definite matrix.
In the particular case of single-output systems (p = 1), Sy becomes a scalar and the optimal solution of
(33) can be obtained from an iterative line search. For p = 2, a search for the optimal solution over
a bi-dimensional grid (composed by the 2 elements of Sy) can be considered. For systems presenting
high number of outputs a relaxation scheme, which translates the problem into a sequence of iterative
LMI problems fixing Sy or (F,D) at each step, can be considered. In this case, the convergence of the
procedure is always ensured, but not necessarily to the global optimal value. Furthermore, the convergence
value will depend on the initialization of Sy or (F,D) in the iterative procedure. Hence, in all these
cases an optimal or sub-optimal solution for (28), (29) or (33) can be easily obtained from the solution
of LMI-based problems.

6 Numerical examples

6.1 Example 1

Consider system (1) with the following matrices:

A =

(
0.5 0.7

−0.7 0.5

)
; B = Bw

(
−1
0.5

)
; C = Cz

(
−1 1

)
; Dz = 0

The saturation limits are defined by: u0 = 2 and y0 = 2. The open-loop system is exponentially unstable,
then only regional (local) stabilization is possible.

Considering now problem (28), the optimal value of δ is 0.5988, which means that the maximal
disturbance L2 bound for which it is possible, from the proposed conditions, to compute a controller that
ensures the trajectories are bounded, is given by 1/

√
δ = 1.2923.

On the other hand, considering that the bound of the admissible disturbances is given by δ−1, Table
1 shows the obtained values for γ solving problem (29) for different values of δ. Note that now, greater
is δ (smaller is the admissible given disturbance bound), smaller is the upper bound on the L2 gain from
w to z (i.e. higher is the disturbance rejection).

δ γ
0.60 282.4406
0.61 80.6618
0.65 21.2647
0.70 11.3802
0.80 6.3783
0.90 4.8623
1.00 4.1695
10.00 2.4813

Table 1: Minimization of γ for a given δ

We consider now the problem of computing a controller that maximizes an estimate of the region of
attraction for the closed-loop system. Thus, we consider the optimization problem (33). In order to avoid
ill conditioning problems and also to ensure some time-domain performance when the systems operates
in the linear region (i.e. when neither actuator nor sensor outputs are saturated), an LMI constraint is
added to (33) in order to ensure that the eigenvalues of A are placed in the following strip in the complex
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plane [5]:
D = {s ∈ C ; − α2 < s < −α1 ;α1,α2 > 0}

Thus, for α1 = 0.05, α2 = 100 and Sy = 2.5, we obtain the following stabilizing controller matrices:

Ac =

(
−92.9775 −8.1916
−6.8976 −75.4127

)
; Bc =

(
505.2395
107.5444

)

Cc =
(

0.0565 0.0776
)
; Dc = −1.3900;

Ec =
(
−467.1186 −437.2380

)′

In this case the domain of stability is given by:

P =

⎛

⎜⎜
⎝

0.1566 −0.1103 0.0003 −0.0001
−0.1103 0.6908 0.0000 0.0004

0.0003 0.0000 0.0001 0.0000
−0.0001 0.0004 0.0000 0.0001

⎞

⎟⎟
⎠

Simulation results for the initial condition ξ(0) =
(
−2.276 0.2731 0 0

)′ ∈ E(P, 1) is shown in
figures 1 and 2. Note that both the actuator and sensor outputs saturate during the initial instants.

0 1 2 3 4 5 6 7 8 9 10
−2.5
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1.5

t

u(
t)

Figure 1: Actuator output
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2.5

t

y(
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Figure 2: Sensor output

Table 2 shows the values of the optimization criterion, for different values of α1. For each value, it is
also shown the value of Sy for which the optimal solution to (33) has been obtained. Figure 3 illustrates,
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for each case in the table, the cut of the corresponding obtained sets E(P, 1) in the plane defined by the
states of the plant (i.e. for xc = 0). The outer ellipsoid corresponds to α1 = 0, while the inner one
corresponds to α1 = 0.5. This illustrates that more stringent is the time-domain performance (greater is
α1), smaller is the obtained region of stability.

α1 trace(P ) + ρ Sy

0 0.7068 3.4
0.05 0.8477 2.5
0.1 1.0215 1.8
0.2 1.4910 0.9
0.3 2.4666 0.9
0.5 8.3144 0.5

Table 2: Trade-off: size of E(P, 1) × performance constraint

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

x1

x
2

Figure 3: Stability domains × performance constraint

6.2 Example 2

Consider the longitudinal dynamics of an F-8 aircraft, given by the following matrices:

A =

⎛

⎜⎜
⎝

−0.8 −0.006 −12 0
0 −0.014 −16.64 −32.2
1 −0.0001 −1.5 0
1 0 0 0

⎞

⎟⎟
⎠ ;B =

⎛

⎜⎜
⎝

−19 −3
−0.66 −0.5
−0.16 −0.5

0 0

⎞

⎟⎟
⎠ ;Bw =

⎛

⎜⎜
⎝

1 0
0 1
0 0
0 0

⎞

⎟⎟
⎠

C =

(
0 0 0 1
0 0 −1 1

)
;Cz =

(
0 0 0 1

)
;Dz =

(
0 1

)
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This example has been addressed in [32], considering only the problem of actuator saturation (anti-
windup problem) and in [3], considering only the sensor saturation problem. Henceforth, we address both
problems simultaneously. We consider that the actuator and sensor bounds are, respectively, given by:

u0 =

(
15
15

)
; y0 =

(
30
30

)

Considering that the admissible disturbances satisfy ||w||22 ≤ 2 × 105, i.e. δ = 5 × 10−6, the solution
of the optimization problem (29) with Sy = Diag(0.05; 0.05) leads to γ = 0.113225 and the following
controller1:

Ac =

⎡

⎢⎢
⎣

−1471.1687 92574.9022 −573.676 −1507.3994
13.2504 −837.3562 5.1827 13.6311

−7235.9778 458884.1667 −2838.8208 −7470.3309
4923.0174 −311339.3013 1927.1434 5068.7017

⎤

⎥⎥
⎦

Bc =

⎡

⎢⎢
⎣

30.3083 9.942
0.08226 0.20071
−73.7222 −131.6338

3.609 52.5262

⎤

⎥⎥
⎦

Cc =

[
−2.2411 141.0032 −0.87026 −2.2904
−164.5013 10388.2088 −64.2876 −169.091

]

Dc =

[
0.31812 0.23529
0.08495 −1.5443

]

Ec =

⎡

⎢⎢
⎣

81.9885 7.7072
0.43251 −0.085127

−210.2422 50.9469
26.8001 −31.9154

⎤

⎥⎥
⎦

Figures 4 and 5 show the responses of the closed-loop system to a disturbance defined as:

w(1)(t) =

{
316; 0 ≤ t < 2
0; t ≥ 2

and w(2)(t) = 0 ∀t ≥ 0

It can be seen that the system outputs (y(t) = z(t)) as well as the controller outputs (yc(t)) signals
assume values larger than the saturation limits. This fact leads to an effective saturation of both sensors
and actuators, but the designed controller stabilizes the system successfully.

We compare now with the behavior of a standard H∞ controller computed disregarding the sensor
and actuator bounds. This controller is given by the following matrices2.

Ac =

⎡

⎢⎢
⎣

−116211.3388 −338635.0467 −1248882.079 486558.9343
109792.9383 234816.3287 944810.6231 −375645.6678
−271193.3741 −673462.1362 −2591901.7495 1020156.7694
−647416.5118 −1645980.3115 −6293201.6411 2473151.1358

⎤

⎥⎥
⎦

1For the computation of both controllers, we have chosen matrix U = I . In order to avoid conditioning problems, we have
considered an additional pole placement constraints in order to have all the real parts of the closed-loop poles in [−100; 0].

2We have considered U = 104
I and pole placement constraints in order to have all the real parts of the closed-loop poles

in [−100; 0].
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Figure 4: System outputs with the controller obtained from (29)
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Figure 5: Controller outputs with the controller obtained from (29)

Bc =

⎡

⎢⎢
⎣

9.2839 −6.2083
−6.403 4.5094
18.4158 −12.6274
45.0275 −30.7544

⎤

⎥⎥
⎦

Cc =

[
255656.6981 49810.1907 −148707.4599 96161.1536
0.0015527 4.6972e − 05 0.0043181 −0.0020795

]

Dc =

[
0 0
−1 1.1609e − 08

]

Figures 6 and 7 show respectively the closed-loop system outputs and the controller outputs obtained
with the H∞ controller when both saturations are present. As it can be seen, the behavior of the
closed-loop system is in this case instable.
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Figure 6: System outputs with the H∞ controller
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Figure 7: Controller outputs with the H∞ controller

6.3 Example 3

Consider that system (1) is described by

A =

(
−0.1 20
−20 −0.1

)
; B = Bw =

(
1
0

)
; C = Cz =

(
1 0

)
; Dz = 0

This system can represent, for instance, the transverse vibrational behavior of a cantilever beam, with
one piezoelectric sensor and and one piezoelectric actuator, considering a reduced model containing only
the fundamental frequency of oscillation. Due to the physical characteristics of the piezoelectric devices,
they present voltage amplitude limitations when used as sensors as well as actuators.

Note that the open-loop system is in this case asymptotically stable. Then, the result proposed in
section 4.2, concerning the global stabilization, can be applied.

In order to evaluate the control performances we consider the following two controllers3:

• The first controller is designed using the result proposed in Corollary 1 and the optimization
problem (29), i.e., the actuator and sensor saturations are explicitly taken into account in the

3For the computation of both controllers, we have chosen V = 1000I and to avoid conditioning problems, we have
considered an additional pole placement constraints in order to have all the real parts of the closed-loop poles in [−0.8;−0.15].

16



design. Hereafter, we denote this controller as Csat. The controller matrices are given by:

Ac =

(
−0.50983 19.9998
−20.0077 −0.21359

)
; Bc =

(
0.39066
0.001135

)

Cc =
(
−0.0030157 4.8441e − 05

)
; Dc = −0.097788

Ec =

(
30.4653
0.4645

)

• The second controller is designed disregarding the saturations. As in the previous case, the perfor-
mance measure considered was the linear L2 induced gain, i.e. it corresponds to a standard H∞

dynamic controller (see for instance [25]). The controller presents the same structure and order as
the previous controller, but with Ec = 0 (since no saturation is supposed to occur). Hereafter, we
denote this controller as CH∞. The controller matrices are given by:

Ac =

(
−2.3675 −308.5849

0.0060046 0.71646

)
; Bc =

(
202735.3372
−569.106

)

Cc =
(
−0.033383 −12.2323

)
; Dc = 0

We consider that the following disturbance is applied to the system:

w(t) =

{
10sin(17t); 0 ≤ t < 20π

17
0; t ≥ 20π

17

Figure 8 shows the disturbance response of the closed-loop system with Csat and CH∞, considering that
no saturation is present. As expected, in the absence of saturations, the controller CH∞ performs much
better.
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Figure 8: Regulated output z(t) - no saturation considered

Now we compare the closed-loop responses of the two controllers in the presence of saturations. We
consider that the sensor output saturate and the actuator output saturate at 1 (i.e. u0 = y0 = 1).

The Figures 9-12 show the closed-loop behavior with the controllers Csat and CH∞. Observer in
Figure 9 that the regulated output with both controllers crosses the limit of 1 and then saturates. As it
can be seen in Figure 10, the behavior of the closed-loop system with CH∞ is less damped and slower
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Figure 9: Regulated output z(t) for t = 0 to 10.
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Figure 10: Zoom on the regulated output z(t) for t = 15 to 20.
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than the closed-loop system with controller Csat. Figures 11-12 show the controllers outputs (yc(t)).
Note that only the CH∞ controller output crosses the limit of 0.5 and then saturates. Note also that
the output of the controller Csat, shown in figure 11, presents a ”pseudo-saturation” around 0.1. This
happens because the system output y(t) = z(t) actually saturates at ±1 and the controller static gain is
around 0.1.

Hence, when saturations are present, the performance achieved with the proposed controller Csat is
better than the one obtained with CH∞, which has been designed by a standard H∞ method without
taking into account the possibility of sensor and actuator saturations.
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Figure 11: Controller output yc(t) - controller Csat.
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Figure 12: Controller output yc(t) - controller CH∞.

7 Conclusion

In this paper, results concerning the problem of controlling linear systems with both sensors and actuators
subject to saturation, through dynamic output feedback, have been presented. It has been shown that the
closed-loop system in this case presents nested saturations. The effect of these nested saturations is taken
into account by re-writing the system equations in order to transform the saturation nonlinearities in
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deadzone nonlinearities. The description of the saturations in the form of deadzone nonlinearities allows
the application of some modified sector conditions. From the combination of these sector conditions
and a quadratic approach, conditions for the synthesis of stabilizing output feedback dynamic controllers
containing a static anti-windup loop have been proposed. The system being also subject to additive
L2-bounded disturbance, the conditions ensure that the computed controller guarantees both internal
asymptotic stability and finite L2-gain stability for the closed-loop system.

The obtained stabilization conditions have been expressed as ”quasi” linear matrix inequalities. The
weak nonlinearity which appears is due to the product of a diagonal multiplier (with order equal to
the number of the inputs) and two other variables. Hence, LMI-based optimization problems have been
proposed to compute the controller in order to optimize one of the following criteria: maximization of the
L2 bound on the admissible disturbances (disturbance tolerance maximization); the minimization of the
induced L2 gain between the disturbance and a regulated output (disturbance rejection maximization);
or the maximization of the region where the asymptotic stability of the closed-loop system is ensured
(maximization of the region of attraction).
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