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Abstract— This paper establishes identifiability and in-
formativity conditions for a class of deterministic linearly
parametrized rational models. The class considered is rational
in the states and polynomial in the inputs. The standard
definitions of identifiability and informativity for linear sys-
tems are expanded to account for the situation, common for
nonlinear deterministic systems, where the identification is
achieved either through the application of informative inputs
or via the response to informative initial conditions. We provide
necessary and sufficient conditions for identifiability from the
initial state, respectively from the input, as well as necessary
and sufficient conditions on the initial state to produce an
informative experiment. We also provide sufficient conditions
on the input to be informative when the initial condition is
unknown and could therefore potentially destroy the transfer
of information from the input to the regressor.

I. INTRODUCTION

The question of identifiability of parametrized dynamical
systems has occupied generations of system theorists, and the
very definition of this concept has evolved over the years.
For a long time, this concept embraced both the parametriza-
tion issue and the richness of the data set. Eventually, a
clear separation was made between the identifiability of the
model structure, which is a parametrization issue, and the
informativity of the data, which is the issue of applying an
excitation to the system that will produce different responses
for different parameter values.

The question of identifiability of the model structure can
be succinctly summarized as follows: does there exist an
experiment such that the data collected from this experiment
allow one to uniquely determine the parameter values? From
a more analytical point of view this question translates
into the following: is the mapping from parameter vector
θ to model M(θ) injective? The seminal paper [13] pro-
vided a broad answer to this question for large classes of
linearly and nonlinearly parametrized systems using tools
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from differential algebra. It is important to observe that
identifiability is a property of the chosen model structure
(i.e. the parametrization); it is totally independent of the true
system and of the data.

The question of informativity of the data turns out to
be harder to solve. For linear time invariant (LTI) systems,
sufficient conditions on the input had been available for a
very long time (see e.g. [12]), but necessary and sufficient
conditions remained elusive until this question was solved
in [9]. The relationship between identifiability, informativity
and the uniqueness of the minimum in a Prediction Error
Identification framework was established in [2] and required
the introduction of the new concept of local informativity.

Informativity of the data - also known as input richness
or transfer of excitation - is a topic that has attracted and
continues to attract a wide attention: it is an experiment
design issue. It is important not just in the context of
identification, but also for the convergence of adaptive esti-
mation and control schemes. Simply stated, the question can
be summarized as follows: how to choose an experiment
such that the data collected from this experiment suffices
to uniquely determine the parameter values, once it has
been determined that such an experiment exists (that is,
once it has been determined that the model structure is
identifiable)? Again, on a more analytical note, this question
translates into: What are the conditions on the excitation
signals that will make the Gramian associated with a certain
regression vector full rank? When that Gramian is full rank,
the regressor vector is said to be informative. The full rank
condition on the Gramian is required for the estimation of the
parameters. The excitation signal is typically an input signal,
but in this paper we examine the situation where it can also
be a properly chosen initial condition or a combination of
both.

Besides the results for the identification of LTI systems
mentioned above, a wide range of questions related to
informativity of the data and transfer of excitation have been
addressed, dealing with different classes of systems, different
types of input, and different convergence requirements.

In [1] informativity conditions on the input have been
obtained for parameter convergence in linear discrete-time
adaptive control schemes. Similar conditions for continuous-
time linear adaptive control systems have been derived
in [10]. In [11] nonlinear adaptive control schemes were
studied, and it was shown that nonlinearities may reduce the
requirements on the richness of the external signal.

In the context of system identification, informativity con-
ditions have been obtained for linear time-varying systems in
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[14], and more specific results have been obtained in [4] for
Linear Parameter Varying systems with an ARX structure.
In [6] informativity conditions on the input signal have been
derived for a class of discrete-time linearly parametrized
systems that are linear in the output and polynomial in the
input. Bilinear systems are special members of this class. In
[16] the question of which type of input signals (e.g. pulses,
impulses, etc) are sufficient for the identification of bilinear
systems has been studied.

In [5] necessary and sufficient conditions were derived
for the identifiability of continuous time scalar linearly
parametrized deterministic polynomial systems. The harder
question of how to generate informative inputs for such
systems was raised in that paper but not solved. In addition,
identification based on the response to an initial condition
was not considered in [5]. A first step towards addressing
these issues was presented in a recent paper [8], where
results on identifiability and informativity for scalar linearly
parametrized systems that are polynomial (rather than ratio-
nal) in the state were presented.

In this paper we expand the results of [5] and [8] in several
directions. First we expand the considered model class: we
consider a class of continuous time linearly parametrized
deterministic models that are rational in the state and poly-
nomial in the input. Secondly, for such models we present
necessary and sufficient conditions for identifiability from
the input and the initial state; these conditions are on the
structure of the model class only. Thirdly, we expand the
traditional view by also presenting necessary and sufficient
conditions for identifiability from the initial state when there
is no input, as well as necessary and sufficient conditions on
the initial state to generate an informative experiment in such
situation. Indeed, it is common in some application fields
that the parameters are identified from data obtained as the
response to some initial condition without any external input.
Finally, we present necessary and sufficient conditions for
identifiability from the input for this rational model class, as
well as sufficient conditions on the input to be informative,
in the context where the initial state is unknown and may
therefore potentially destroy the transfer of excitation from
the input to the regressor.

The remainder of the paper is organized as follows. In
Section II we present the nonlinear model class that is treated
in this paper and the fundamental assumptions on the signals
and the models. In Section III the definitions of identifiability
and informativity are extended from the linear stationary
stochastic case to the case of nonlinear deterministic systems.
Fundamental results on identifiability for the considered class
of model structures are given in Section IV. From that
point on, we depart from the classical setting in which
identifiability and informativity are secured from the input,
to definitions that apply when these can also be secured
from the response to an initial condition. The tools developed
in Section IV are essential in the subsequent developments.
In Section V we study the identifiability and informativity
from the initial state with zero input, providing the formal
definitions of these concepts and necessary and sufficient

conditions for both. Then we approach, in Section VI, the
problem of identifiability and informativity from the input,
regardless of the initial state. Again the concepts are formal-
ized and conditions for identifiability and informativity are
presented. An example is given that illustrates the difficulty
of obtaining necessary and sufficient conditions on the input
to be informative regardless of the initial state. Section VII
concludes.

II. MODEL CLASS AND ASSUMPTIONS

Consider the following class of deterministic continuous-
time nonlinear model structures:

ẋ = f(x, θ) + g(x, u), x(0) = x0 (1)
y = h(x, θ)

where x : < → < is a scalar state, θ ∈ <d is an unknown
vector, f(·, ·), g(·, ·) and h(·, ·) are given (i.e. known) scalar
analytical functions and g(·, 0) = 0. We shall specialize in
this paper to a class of linearly parametrized models that are
rational in the state and polynomial in the input, with the
following form for f(x, θ), g(x, u) and h(x, θ):

f(x, θ) =
1

n(x)
[θTφ(x) +m(x)] (2)

g(x, u) =
1

n(x)

l∑
i=1

gi(x)u
i =

1

n(x)
G(x)U (3)

h(x, θ) = x (4)

where n(x) is a known polynomial such that n(x) > 0 ∀x ∈
<, φ(x) ∈ <d is a known polynomial vector in the scalar
x, m(x) is a known polynomial in x, gi(x) ∈ < are known
polynomials in x, and where G(x) and U are defined as
follows:

G(x) = [g1(x) g2(x) . . . gl(x)], U = [u u2 . . . ul]T (5)

We denote by q the polynomial degree of φ(x), i.e. the degree
of the highest degree polynomial in φ(x). In order to avoid
a degenerate situation, we make the following assumption
concerning the model structure.

Assumption 1: At least one of the polynomials
φ1(x), . . . , φd(x),m(x), g1(x), . . . , gl(x) is not the
zero polynomial, and the term m(x) is such that
@ η 6= 0 : m(x) ≡ ηTφ(x).

This last assumption does not represent a loss of generality
in the model; if m(x) = ηT1 φ(x) for some η1, then the model
could be rewritten as f(x, ρ) = 1

n(x) [ρ
Tφ(x)] with the new

parameter vector ρ = θ+η1. The family of all models (1)-(4)
generated by all θ ∈ <d is called the model class M.

Concerning the signals, we shall make the following
assumption which is standard in nonlinear system identifi-
cation; see, e.g., [5] and [13].

Assumption 2: The signal u(t) is analytic and the solu-
tion x(t) of (1) is an analytic function of time for all u(t)
and x(0).



The virtue of the above assumption is that knowing all
derivatives of an analytic signal at some time is equivalent
to knowing that signal at all times.

Ideally the choice of parameterization made in (1)-(4)
should be such that the model class can describe exactly
the true system; we shall throughout make the following
assumption.

Assumption 3: There exists a parameter value θ0 such
that the true system is described by (1) with θ = θ0.

The model structure (1)-(4) can be rewritten as

ẋ =
θTφ(x) +m(x) +G(x)U

n(x)
, x(0) = x0 (6)

or, alternatively, as

n(x)ẋ = θTφ(x) +m(x) +G(x)U, x(0) = x0 (7)

This latter expression will be most convenient for some of
the derivations to follow.

III. THE CONCEPTS OF IDENTIFIABILITY AND
INFORMATIVITY

We now present definitions that are the nonlinear deter-
ministic counterpart of the classical definitions given in [12]
for linear time-invariant systems in a stochastic framework of
quasi-stationary processes. These definitions clearly separate
the concepts of identifiability, which is a property of the
model structure, and of informativity, which is a property of
the experimental data. In addition, we shall depart from the
Linear Time Invariant (LTI) literature on identifiability and
informativity by considering that the information content in
the data, that allows estimation of the unknown parameters,
can come either from the external input signal u(.) or from
the response to an initial condition x0. Indeed in many
engineering applications of nonlinear systems (e.g. in batch
chemical processes) the experiment that allows the estimation
of the unknown parameters is obtained by measuring the
response of the nonlinear system to some initial condition; in
particular, it is often the case that there are no external inputs
to the system. For the sake of generality and of possible
future extensions, we present all definitions for the general
model class (1), without any restriction on linearity in θ,
rationality in x or polynomial structure in u.

Consider the model structure (1) at some value θ? with
initial condition x0:

ẋ = f(x, θ?) + g(x, u), x(0) = x0 (8)
y = h(x, θ?)

and the same model structure at θ with initial condition x̂0:

˙̂x = f(x̂, θ) + g(x̂, u), x̂(0) = x̂0 (9)
ŷ = h(x̂, θ)

Definition 1: (Identifiability at θ?) The model structure
(1) is globally identifiable at θ? if there exists an experiment
z(.)

∆
= {u(.), x0} such that, for all θ ∈ <d, the outputs of

the models (8) and (9), driven by the same u(.) and with the

same initial condition x0 = x̂0 are identical (i.e. ŷ(t, θ) =
y(t, θ?) ∀t ≥ 0) only if θ = θ?.

This definition relies on the possible existence of an appro-
priate experiment z(.) that differentiates between different
values of θ by measuring the output. Such an experiment,
when it exists, will be called informative. In [2], the new
concept of informativity at a particular θ∗ was introduced
for stationary stochastic LTI systems; the next definition is
its deterministic counterpart.

Definition 2: (Informativity at θ?) The experiment
z(.)

∆
= {u(.), x0} is globally informative at θ? for the model

set (1) if, for all θ ∈ <d, the outputs of the models (8) and
(9), driven by the same experimental data z(.), are identical
(i.e. ŷ(t, θ) = y(t, θ?) ∀t ≥ 0) only if θ = θ?.

These definitions exhibit the two ingredients that are nec-
essary for a meaningful identification: informativity, which
is a property of the applied experiment (input signal, initial
condition, or a combination of these), and identifiability,
which refers to the possible existence of an informative
experiment given a particular model structure. These two
ingredients depend only on the model structure. We should
add, however, that under our Assumption 3, the purpose of
identification is to identify the true system. This requires that
one is able to produce an informative experiment at θ0; in that
sense, an experiment that is informative for the identification
of the true system depends on that system.

IV. FUNDAMENTAL IDENTIFIABILITY ANALYSIS

Rewriting the model structure (7) in the form

n(x)ẋ−m(x)−G(x)U = θTφ(x), x(0) = x0 (10)

shows that identifiability rests entirely on the vector φ(x).
Since the left hand side is a measured quantity, we observe
that θ can be uniquely determined from measured data over a
period [0, t] if and only if φ(x) can be made to span the whole
space <d over that same period. This amounts to finding an
experiment z(.) ∆

= {u(τ) for τ ∈ [0, t], x0} that makes φ(x)
sufficiently rich over the interval [0, t].

Definition 3: Let the trajectory x(τ, θ) be defined as the
solution of the differential equation (10) for some u(τ), τ ≥
0 and some x0. The vector φ(x(τ, θ)) is sufficiently rich over
an interval [t0, t0 + t] if there exists α > 0 such that∫ t0+t

t0

φ(x(τ, θ))φT (x(τ, θ))dτ > αI (11)

Lemma 4.1: The model structure (10) is globally identi-
fiable at some θ? if and only if there exists an experiment
z(.)

∆
= {u(τ) for τ ∈ [0, t], x0} such that φ(x(t, θ?)) is

sufficiently rich over the interval [0, t].
Proof: Consider the solution x(t, θ?) of the model (10) at
θ?, and the solution x(t, θ) of the same model at some
other θ, both solutions driven by the same input signal and
with the same initial condition. Suppose that for all input
signals {u(τ), τ ∈ [0, t]} and for all initial conditions x0 the
solutions x(τ, θ?) and x(τ, θ) of (10) are identical. The left



hand sides of (10) are then also identical and φ(x(τ, θ?)) =
φ(x(τ, θ)) ∀τ ∈ [0, t]. It then follows that

(θ? − θ)Tφ(x(τ, θ?)) ≡ 0 ∀τ ≥ 0

which is equivalent to

(θ?−θ)Tφ(x(τ, θ?))φT (x(τ, θ?))(θ?−θ) ≡ 0 ∀τ ≥ 0 (12)

Integrating (12) over the interval [0, t] yields

(θ? − θ)T
∫ t

0

φ(x(τ, θ?))φT (x(τ, θ?))dτ (θ? − θ) = 0

It follows that θ = θ? if and only if φ(x(t, θ?)) is sufficiently
rich over the interval [0, t].

The sufficient richness of the regressor vector φ(x(τ, θ)) ∈
<d, as defined in Definition 3, hinges on two questions:
(i) does there exist a vector X ∆

= [x1, x2, . . . xd] ∈ <d such
that the d × d matrix L(X)

∆
= [φ(x1), φ(x2), . . . , φ(xd)] is

nonsingular?
(ii) does there exist an experiment that generates a φ(x(τ, θ))
which spans the whole space <d? This requires that the
trajectory x(τ, θ), which depends on θ, u(.) and x0, passes
through d points {x1, x2, . . . xd} that make L(X) nonsingu-
lar.

The first is a structural issue on φ(x) only; it is inde-
pendent of θ, u(.), x0,m(x), n(x) and G(x). Existence of
such an X is a necessary condition for identifiability [5].
To proceed in this analysis we use the fact that φ(x) is an
analytic function of time, which leads to the following result.

Theorem 4.1: The model structure (10) is globally iden-
tifiable at some θ? if and only if there exists an experiment
z(.)

∆
= {u(τ) for τ ∈ [0, t], x0} such that

βTφ(x0) = βT φ̇(x0) = . . . = βTφ(k)(x0) = 0 ∀k ≥ 0
(13)

implies β = 0.
Proof: It follows from Lemma 4.1 and Definition 3 that the
model structure (10) is not identifiable at θ? if and only if
for all initial conditions x0 and for all inputs u(τ), τ ≥ 0,

∃β 6= 0 : βTφ(x(θ?, t)) ≡ 0 ∀t ≥ 0 (14)

Because the solutions of (10) are analytic by Assumption 2,
(14) is equivalent to the satisfaction of

βTφ(x) = βT φ̇(x) = . . . = βTφ(k)(x) = 0 ∀k ≥ 0 (15)

for some β 6= 0 at any particular value of x, in particular at
x(0) = x0.

The equivalence between (14) and (15) will form the basis
for our derivations of identifiability and informativity in the
following sections. To facilitate these derivations we now
define the following d× (k + 1) matrix

Rk(θ, x)
∆
= [φ(x) φ̇(x) . . . φ(k)(x)], k ≥ 1 (16)

In particular we shall consider

R∞(θ, x)
∆
= [φ(x) φ̇(x) φ̈(x) . . .] (17)

Comment - It is important to realize that in the expressions
(15)-(16)-(17) the derivatives of φ(x), evaluated at some time
t0 and hence at some state x(t0), depend also on θ and
on the derivatives of x at t0. Equivalently, by application
of the model equations, one can think of the derivatives
of φ(x) as depending on θ, u(t0) and the derivatives of
u(t) at t0. In order not to be overwhelmed by notation, we
shall only mention the θ-dependence of the matrices in these
expressions.

With the notation (17), the statement (15) can be rewritten
as

βTR∞(θ, x) = 0. (18)

This leads to the following equivalent statement for Theo-
rem 4.1.

Corollary 4.1: The model structure (10) is globally iden-
tifiable at some θ? if and only if

%(R∞(θ?, x0)) = d for some z(·) (19)

where %(·) represents the rank of a matrix.

Now observe that

φ̇(x) =
∂φ(x)

∂x
ẋ,

φ̈(x) =
∂2φ(x)

∂x2
ẋ2 +

∂φ(x)

∂x
ẍ,

and so on for all time derivatives of φ(x). We define the
following d× (k + 1) matrix:

Jk(x)
∆
=
(
φ(x) ∂φ(x)

∂x
∂2φ(x)
∂x2 . . . ∂kφ(x)

∂xk

)
(20)

which contains only the derivatives of φ(x) with respect to
x and thus depends only on the structure of the vector φ(x)
itself (and not on θ and u(t)). It is important to note that all
columns to the right of the (q + 1)-th column of Jk(x) are
zero since deg(φ(x)) = q.

Then straightforward calculations show that one can write

Rk(θ, x) = Jk(x)Wk(θ, ẋ, ẍ, . . . , x
(k)) (21)

where Wk is a (k + 1)× (k + 1) upper-triangular matrix of
the form

Wk(θ, ẋ, ẍ, . . . , x
(k)) =


1 0 0 0 0
0 ẋ ẍ . . . x(k)

0 0 ẋ2 . . . ×
...

...
...

. . . ×
0 0 0 . . . ẋk

 (22)

where all elements to the right of the diagonal contain
derivatives of x. The factorization (22) will play a useful role
in the sequel. It immediately leads to the following important
necessary condition for identifiability.

Corollary 4.2: The model structure (10) is globally iden-
tifiable at some θ only if %(Jq) = d. This requires in



particular that q ≥ d− 1.
Proof: First note that, because of the polynomial nature of
φ(x), the rank of Jq(x) is the same for all x; accordingly,
we henceforth refer to its rank as %(Jq) (removing the
dependence on x from this notation). The result follows from
condition (19) of Corollary 4.1, the factorization (21), and
the fact that, for k ≥ q, the matrix Jk(x) can be written as
Jk(x) =

[
Jq(x) 0d×(k−q)

]
.

We observe that this condition is on the structure of the
regressor φ(x) only; in particular it imposes a constraint on
the polynomial degree of the regressor vector1.

In order to prove the main results of this Section, we shall
need the following trivial technical Lemma.

Lemma 4.2: Consider the polynomial d(x, u) ∆
= a(x) +∑l

i=1 ci(x)u
i where a(x) and {ci(x), i = 1, . . . , l} are scalar

polynomials in the real variable x. Then the following two
statements are equivalent

(i) ∃x0 : d(x0, u) = 0 ∀u (23)
(ii) a(x0) = 0 and ci(x0) = 0, i = 1, . . . , l (24)

Proof: For a given x0, the polynomial d(x0, u) is a poly-
nomial of degree l in u with constant real coefficients. This
polynomial is zero for all u (i.e. identically zero) if and only
if all its coefficients are zero.

The first main result shows that in our analysis of identifia-
bility we can replace the rank condition (19) on the infinite-
dimensional matrix R∞(θ, x0) by a rank condition on the
finite matrix Rq(θ, x0).

Theorem 4.2: For the model structure (10) with
deg(φ(x)) = q, for any given θ and any given x0, the
following two statements are equivalent:

βTR∞(θ, x0) = 0 ∀u (25)
βTRq(θ, x0) = 0 ∀u (26)

Both statements imply

βTJq(x0)diag(1, ẋ, . . . , ẋ
q) = 0 ∀u (27)

Proof: (i) That (25) implies (26) is trivial since the equations
(26) are a subset of the equations (25).
(ii) We next prove that (26) implies (25). To this end we will
first show that for any positive integer k, βTRk(θ, x0) = 0
for all u implies

βTJk(x0)diag{1, ẋ, · · · , ẋk} = 0 ∀u, (28)

thereby establishing (27). Then as φ(x) has degree q, and
thus all its derivatives of order higher than q are zero, the
result will follow from (20).

Thus, assume that (26) holds for some θ and x0. The
second equation of (26) is:

βT
∂φ

∂x
ẋ(0) = 0 for all u. (29)

1It is also equivalent to the elements of φ(x) being all linearly indepen-
dent in the space of polynomials over the field of real numbers.

This shows that βTR1(θ, x0) = 0 ∀u is equivalent to (28)
with k = 1. Now (29) is equivalent to

βT
∂φ

∂x
[

1

n(x0)
(θTφ(x0) +m(x0)) +

1

n(x0)
G(x0)U ] = 0

for all u. By Lemma 4.2 this is equivalent to

βT
∂φ

∂x

1

n(x0)
[θTφ(x0) +m(x0)] = 0 (30)

and βT
∂φ

∂x

1

n(x0)
G(x0) = 0 (31)

Since n(x0) > 0, the last equation is equivalent to

βT
∂φ

∂x
G(x0) = 0 (32)

We have thus shown that the second equation of
βTRq(θ, x0) = 0 ∀u is equivalent to (30) and (32).

Now consider the third equation of βTRq(θ, x0) = 0 ∀u,
i.e. βT φ̈ = 0 for all u at x0. Convenient expressions for
the time derivatives of the state and of φ(x) are given in
Lemmas 1.1 and 1.2 of the Appendix. Using (29) and (32)
in (57) reduces the third equation to

βT
∂2φ

∂x2
ẋ(0)2 = 0 for all u. (33)

Thus we have shown that βTR2(θ, x0) = 0 for all u implies

βTJ2(x0)

 1 0 0
0 ẋ 0
0 0 ẋ2

 = 0 for all u.

We now proceed by induction. Consider first that k− 1 ≤ q
and assume that βTRk−1(θ, x0) = 0 for all u implies

βTJk−1(x0)diag(1, ẋ, . . . , ẋ
k−1) = 0 for all u. (34)

Now consider the new equation βTφ(k) = 0 at x0 for all
u (i.e. the last column of βTRk(θ, x0) = 0), and replace
φ(k) by its expression (56). It then follows that all terms
of the second line of (56), premultiplied by βT , are zero
by (34), and all terms of the third line, premultiplied by
βT , are zero by (32). This shows that βTRk(θ, x0) = 0
for all u implies βTJq(x0)diag(1, ẋ, . . . , ẋ

q) = 0 for all u.
Proceeding to k = q + 1, we note that βTRq+1(θ, x0) = 0
for all u implies that the last column of βTRq+1(θ, x0) is
zero, i.e. βTφ(q+1) = 0 at x0 for all u, because ∂(q+1)φ

∂xq+1 = 0
since deg(φ) = q. Arguing in this way establishes (28). This
implies that all columns of βTR∞(θ, x0) to the right of the
(q + 1)-st column are zero for all u. We have thus proved
that (26) implies (25).

Now let Wq(θ, ẋ, . . . , x
(q)) be the square matrix consisting

of the first q + 1 columns of W∞(θ, ẋ, . . . , x(q)); then

Rq(θ, x) = Jq(x)Wq(θ, ẋ, . . . , x
(q)) (35)

and we have the following final fundamental result on
identifiability.

Theorem 4.3: Under Assumption 1, the model structure
(10) is globally identifiable at all θ if and only if %(Jq) = d.



Proof: Since R∞(θ, x) can always be factored as R∞ =
JqM for some M , necessity is obvious. We prove sufficiency
by contradiction. Thus, assume that the model structure is not
identifiable at some θ?. By Corollary 4.1 this means that for
all x0 and u(.) there exists β 6= 0 such that

βTRq(θ, x0) = 0. (36)

By Theorem 4.2 this implies that there exists β 6= 0 such
that

βTJq(x0)diag(1, ẋ, . . . , ẋ
q) = 0 ∀ x0, u. (37)

In particular this implies, using the first equation of (37), that
∃β 6= 0 such that βTφ(x0) = 0 for all x0. But βTφ(x) ≡ 0
implies βTJq(x) ≡ 0 and hence βTRq(θ, x) ≡ 0, which
contradicts the assumption.

Theorem 4.3 gives a necessary and sufficient condition for
identifiability, and also provides the tools to further advance
in the analysis of identifiability and of informativity in
different scenarios. The informativity issue has not been dealt
with so far in this paper. On the other hand, identifiability
as defined previously in this paper means that we can chose
an input and an initial condition such that the identification
will succeed. But it is seldom the case that the designer of
an identification experiment has the choice of an input signal
and at the same time can decide on the initial condition, so
identifiability in this sense has limited practical interest.

Thus we shall consider from now on the following two
situations separately, which are the ones of practical interest:

1) the system has no external input, i.e. u(t) ≡ 0,
and identifiability must be secured through the initial
condition x(0). If the model structure is identifiable
through x(0), then the informativity question amounts
to finding a x0 that delivers informative data via the
transient response.

2) the input signal u(.) must provide informative data
whatever the initial condition x0; in this second sit-
uation, identifiability must be guaranteed by the input
signal regardless of the initial condition, i.e. one must
assure that “adversarial” initial conditions do not kill
the excitation coming from u(.). If the model structure
is identifiable through u(.), then the informativity
question amounts to finding a sufficiently rich u(.) that
provides informative data.

This second situation is the most commonly treated and
probably the most commonly found in practice, but the first
one is also found in a variety of applications, particularly in
(bio-) chemical batch process [15], [3], [7]. For pedagogical
reasons, we start our analysis with the simpler case where the
identifiability of the parameters must be secured through the
response to an initial state, assuming that there is no driving
input to the system.

V. IDENTIFIABILITY AND INFORMATIVITY
FROM THE INITIAL STATE

A. Definitions

When u(t) ≡ 0 the models (8) and (9) become:

ẋ = f(x, θ?), y = h(x, θ?), x(0) = x0 (38)
˙̂x = f(x̂, θ), ŷ = h(x̂, θ), x̂(0) = x̂0 (39)

Definition 4: (Identifiability at θ? from x(0)) The
model structure (38) is globally identifiable at θ? from the
initial condition x(0) if there exists an initial condition
x0 = x̂0 such that, for all θ ∈ <d, the outputs of the models
(38) and (39) are identical (i.e. y(t) = ŷ(t) ∀t ≥ 0) only if
θ = θ?.

Definition 5: (Informativity of the initial condition at
θ?) The initial condition x0 is globally informative at θ? for
the model structure (38) if for all θ ∈ <d, the outputs of
the models (38) and (39) with initial condition x0 = x̂0 are
identical (i.e. y(t) = ŷ(t) ∀t ≥ 0) only if θ = θ?.

B. Identifiability and informativity results

We now provide necessary and sufficient conditions for
identifiability and informativity at a given θ from the initial
state, for the model class of rational models (6) in which the
input is assumed zero:

ẋ =
1

n(x)
[θTφ(x) +m(x)], x(0) = x0 (40)

We first show that in the case where the input is zero,
Theorem 4.2 can be replaced by the following stronger
statement.

Theorem 5.1: For the model class (40), with
deg(φ(x)) = q, the following three statements are
equivalent:

βTR∞(θ, x0) = 0 (41)
βTRq(θ, x0) = 0 (42)
βTJqdiag(1, ẋ, . . . , ẋ

q) = 0 (43)

Proof: As in the proof of Theorem 4.2, it is clear that (41)
implies (42). We now prove that (42) is equivalent to (43),
which implies (41). Since φ̇(x) = ∂φ(x)

∂x ẋ, it follows that
R1(θ, x) = J1(x)diag(1, ẋ). Now consider βTR2(θ, x) =
0; the third equation is βT φ̈ = 0. By equation (57) of the
Appendix, this is equivalent to

βT
∂2φ

∂x2
ẋ2 + βT

∂φ

∂x
m2,1(θ, x, u)ẋ = 0

The second term is zero by the second equation of
βTR2(θ, x) = 0 and hence

βTR2(θ, x) = 0 if and only if βTJ2(x)diag(1, ẋ, ẍ) = 0.

By an induction step, just as in the proof of Theorem 4.2,
it follows that for all k ≥ 1, βTRk(θ, x) = 0 is equivalent
to βTJ2(x)diag(1, ẋ, ẍ) = 0. That (43) implies (41) then
follows from the fact that the columns of Jk become zero
for all columns to the right of the (q + 1)-st column.



The main result on identifiability from the initial state
follows.

Theorem 5.2: Under Assumption 1, the model class (40)
is globally identifiable from the initial state at every θ if and
only if %(Jq) = d.
Proof: By Corollary 4.1, the model class is globally iden-
tifiable at some θ∗ if and only if there exists x0 such that
%(R∞(θ∗, x0)) = d. By Theorem 5.1 this is equivalent to
the existence of a x0 such that

βTJq(x0)diag(1, ẋ(0), . . . , ẋ
q(0)) = 0 ⇒ β = 0 (44)

It follows immediately that Jq(x0) must be full rank, which
proves necessity. For sufficiency, assume that Jq has full rank
and suppose that for all x0 there exists a β 6= 0 such that
(44) holds. Then the first equation of (44) yields βTφ(x) = 0
for all x, which implies βTJq(x) = 0 for all x; this violates
the assumption.

We also have an immediate characterization of an informative
initial condition.

Theorem 5.3: Let the model structure (40) be globally
identifiable from the initial state at a given θ∗ (i.e. %(Jq) = d)
and let d > 1. Then an initial condition x0 ∈ < yields a
globally informative experiment at θ∗ if and only if x0 is
not a root of the polynomial equation

φT (x0)θ
∗ +m(x0) = 0. (45)

That such an x0 exists is guaranteed by Assumption 1.
In fact, for any given θ almost all initial conditions are
informative, since the polynomial θTφ(x)+m(x) has a finite
number of roots.

The condition d > 1 is included in Theorem 5.3 for the
sake of making the statement necessary and sufficient. For
d = 1, that is a scalar φ(x), θ may still be identifiable when
φ(x0)θ +m(x0) = 0 provided that φ(x0) 6= 0.

C. An illustrative example

Example 1
Consider the model structure

ẋ =
θ1x

2 + θ2x

1 + x2
=

1

1 + x2
θTφ(x), x(0) = x0 (46)

with θT = [θ1 θ2] and φT (x) = [x2 x]. We first observe
that q = 2 and

J2(x) =

(
x2 2x 2
x 1 0

)
so that %(J2(x)) = 2 for all x; hence the model structure
is globally identifiable from the initial state at every θ. The
factorization (21) with k = q = 2 yields the 2 × 3 matrix
R2(θ, x) as:

R2(θ, x) = J2(x)

 1 0 0
0 ẋ ẍ
0 0 ẋ2

 = J2(x)W (θ, ẋ, ẍ)

(47)

Theorem 5.3 states that an initial state x0 is informative at
some θ if and only if θ1x

2
0+θ2x0 6= 0. But θ1x

2
0+θ2x0 = 0

implies either x0 = 0 or x0 = − θ2θ1 . Any initial condition
other than these two yields θ1x

2
0 + θ2x0 6= 0.

Therefore any initial condition other than x0 = 0 or
x0 = − θ2θ1 is informative. One of these uninformative
initial conditions is a function of the unknown θ. Thus we
conclude that two experiments with two different nonzero
initial conditions will always allow the estimation of the
parameter vector θ.

Before concluding, we illustrate the equivalence between
(42) and (43) for this example. We have

R2(θ, x) =

(
x2 2xẋ 2xẍ+ 2ẋ2

x ẋ ẍ

)
J2(x) diag(1, ẋ, ẋ

2) =

(
x2 2xẋ 2ẋ2

x ẋ 0

)
From the model equation, we also have

ẍ =
1

(1 + x2)2
(
2θ1x+ θ2 − θ2x2

)
ẋ

The determinants of the minors of R2 are −x2ẋ, −x2ẍ −
2xẋ2 and −2ẋ3, while those of J2(x)diag(1, ẋ, ẋ

2) are
−x2ẋ, −2xẋ2 and −2ẋ3. Substituting for ẍ, we conclude
that, for both matrices, the determinants of all minors are
zero at some x0 if and only if ẋ = 0 at x0.

VI. IDENTIFIABILITY AND INFORMATIVITY
FROM THE INPUT

We now seek identifiability conditions and informativity
from the input regardless of the initial state. The definitions
of Section III can be adapted to this case as follows.

A. Definitions: Identifiability and informativity from u(.)

Consider the model structure

ẋ =
θ?Tφ(x) +m(x) +G(x)U

n(x)
, x(0) = x0 (48)

and the same model structure at some other parameter vector
θ with the same initial condition:

˙̂x =
θTφ(x̂) +m(x̂) +G(x̂)U

n(x̂)
, x̂(0) = x0 (49)

Definition 6: (Identifiability at θ? from u) The model
structure (48) is globally identifiable at θ? from the input u if
there exists an input u(.) such that, for all initial conditions
x0 and for all θ ∈ <d, the solutions of the models (48) and
(49) are identical (i.e. x(t) = x̂(t) ∀t ≥ 0) only if θ = θ?.

This definition is consistent with the definition of global
identifiability at some θ∗ used in [12] and adopted in [2] for
LTI systems.

Definition 7: (Informativity of the input at θ?) The
input signal u(.) is globally informative at θ? for the model
structure (48) if, for all initial conditions x0 and for all
θ ∈ <d, the solutions of the models (48) and (49) with this
input u(.) are identical (i.e. x(t) = x̂(t) ∀t ≥ 0) only if
θ = θ?.



B. Identifiability from the input

The following theorem is the main result on identifiability
from the input.

Theorem 6.1: Consider the model structure (48) with
deg(φ(x)) = q and let d > 1. This model structure is
globally identifiable at θ? from the input u if and only if
the following two conditions hold simultaneously:
(i) %(Jq) = d;
(ii) the polynomials θ?Tφ(x) + m(x) and {gi(x), i =
1, . . . , l} have no common real root w.r.t. x.
Proof: First note that, from Definition 6 and Theorem 4.1,
identifiability at θ∗ from u is equivalent to the existence of
an input u(.) such that %(R∞(θ?, x0)) = d ∀x0.
We first prove sufficiency, by contradiction: suppose that the
system is not globally identifiable at θ?. Then there exists
a x0 and β 6= 0 such that (25) holds. By Theorem 4.2 this
implies (27), which implies that either %(Jq) < d, which
violates condition (i), or ẋ(0) = 0 ∀u at x0. By Lemma 4.2,
the latter is equivalent to θ?Tφ(x0) + m(x0) = 0 and
gi(x0) = 0, i = 1, . . . , l, which violates condition (ii).
Next we prove necessity, by showing that if either (i) or (ii) is
violated then there exists a x0 such that %(R∞(θ?, x0)) < d.
Suppose first that %(Jq) < d. Then there exists a x0 and
a β 6= 0 such that βTJq(x0) = 0. Since R∞(θ, x0) can
always be written as R∞(θ, x0) = Jq(x0)M(θ, x0) for some
M(θ, x0), it follows that βTR∞(θ, x0) = 0. Suppose now
that condition (ii) is violated, i.e. there exists x0 such that
all polynomials appearing in (ii) are zero at x0; in particular
G(x0) = 0. It then follows from the model equation (48)
and from n(x0) > 0 that ẋ(0) = 0 for all u. Therefore, by
equation (56) of the Appendix, φ(k) = 0 at x0 for all k, and
hence the model structure is not identifiable.

The condition d > 1 is there for the sake of making the
statement necessary and sufficient. For d = 1 we have the
following

Corollary 6.1: Consider the model structure (6) with
deg(φ(x)) = q and let d = 1. This model structure is
identifiable at θ? from the input u if the following two
conditions hold simultaneously:
(i) %(Jq) = 1;
(ii) the polynomials θ?φ(x)+m(x) and {gi(x), i = 1, . . . , l}
have no common real root w.r.t. x.
Moreover, condition (ii) is not necessary for identifiability
from the input.
Proof: From Theorem 6.1, under the necessary condition
%(Jq) = d, identifiability from the input is equivalent to
θ?Tφ(x0)+m(x0)+G(x0)U 6= 0 for all x0 ∈ <. This, in its
turn, is implied by condition (ii), but only implies condition
(ii) for d > 1. Indeed, for d = 1, if θ?φ(x0) +m(x0) = 0
and {gi(x0) = 0, i = 1, . . . , l} for some x0, then θ? may
still be identified from the equation φ(x0)θ

? +m(x0) = 0
provided that φ(x0) 6= 0.

C. Informativity from the input

If the identifiability conditions of Theorem 6.1 are ful-
filled, then there exists an informative input signal, that is,
one that allows the discrimination between two different
parameter vectors θ and θ? regardless of the initial condition.
However, Theorem 6.1 does not provide a clue as to which
input signals will be informative. Obtaining necessary and
sufficient conditions on the input signal u to be informative
for the model class (48) regardless of the initial condition
turns out to be very difficult. The objective of the present
subsection is twofold: we first provide a sufficient condition
for informativity of the signal u; we then illustrate with an
example that this condition is not necessary, i.e. for this
example we construct an informative input that does not
satisfy this sufficient condition.

Theorem 6.2: Assume that the model structure (48) is
globally identifiable at some θ?. An input signal u(.) is
informative at θ? if at any given time, say t = 0, ẋ 6= 0 ∀x0.
Proof: It follows from Definition 7 that an input signal
{u(τ), τ ≥ 0} is informative at θ? if and only if the matrix
R∞(θ?, x0) has full row rank for all x0 ∈ <. Now consider
Rq(θ

?, x0) and factorize this matrix as in (21):

Rq(θ
?, x0) = Jq(x0)Wq(θ

?, ẋ, . . . , x(q)) (50)

where the derivatives in Wq are evaluated at t = 0. It follows
from the form of Wq (see (22)) that it is nonsingular for all
x0 if ẋ(0) 6= 0 for all x0. Since %(Jq) = d by the global
identifiability assumption, it then follows from the Sylvester
inequality applied to (50):

%(Jq) + %(Wq)− (q + 1) ≤ %(Rq),

that %(Rq(θ?, x0)) = d for all x0 if ẋ(0) 6= 0 for all x0.
Since Rq(θ

?, x0) is a submatrix of R∞(θ?, x0), the result
follows.

The sufficient condition on u can equivalently be stated as
follows.

Corollary 6.2: Assume that the model structure (48) is
globally identifiable at some θ?. An input signal u(.) is
informative at θ? if

θ?Tφ(x0) +m(x0) +

l∑
i=1

gi(x0)u
i 6= 0 ∀x0. (51)

The following example shows that the condition of
Theorem 6.2 is not necessary; but it also illustrates that
there may be no input that satisfies the condition (51)
even though an informative input exists. We shall construct
such informative input by directly ensuring that the matrix
Rq(θ

?, x0) has full rank for all x0.

Example 2
Consider the model structure

ẋ =
1

1 + x2
[θ1x

2 + θ2x+ u] =
1

1 + x2
[θTφ(x) + u], (52)



with θ and φ(x) as in (46). The model structure is identifiable
at all θ since the two conditions of Theorem 6.1 are satisfied.
Now consider informativity.

We observe immediately that there is no input u(.) that
makes ẋ(0) 6= 0 for all x0; thus the sufficient condition
of Theorem 6.2 cannot be used to construct an informative
input. However, we now show that one can construct an input
u(.) that makes R2(θ, x0) full rank for all x0. R2(θ, x) takes
the form:

R2(θ, x0) =

(
x2

0 2x0ẋ(0) 2x0ẍ(0) + 2ẋ2(0)
x0 ẋ(0) ẍ(0)

)
We observe that the determinants of the three minors of
R2 are, respectively, −x2

0ẋ(0), −2ẋ2(0) and (−x2
0ẍ(0) −

2x0ẋ
2(0)). Substitute

ẋ = θ1x
2
0 + θ2x0 + u(0)

ẍ = 2θ1ẋx0 + θ2ẋ+ u̇(0)

and consider 2 cases separately: x0 = 0 and x0 6= 0.

Case 1: Suppose first that x0 = 0; then ẋ(0) = u(0), ẍ(0) =
θ2u(0) + u̇(0), and

R2(θ, 0) =

(
0 0 2u2(0)
0 u(0) θ2u(0) + u̇(0)

)
Thus, R2(θ, 0) has full rank if and only if u(0) 6= 0.

Case 2: Take u(0) 6= 0 and consider x0 6= 0. Again two
cases must be considered.
(a) Suppose first that ẋ(0) 6= 0. Then R2(θ, x0) has full rank
because the determinant of the second minor −2ẋ2(0) 6= 0.
(b) Suppose next that ẋ(0) = 0. Then the determinant of the
third minor of R2(θ, x0) is given by −x2

0ẍ(0) = −x2
0u̇(0)

which is nonzero if we take u̇(0) 6= 0.
These informativity conditions are independent of θ. We

conclude that an input u(.) such that at some time, say t = 0,
u(0) 6= 0 and u̇(0) 6= 0 is globally informative for the model
structure (52).

Example 2 illustrates an interesting feature of the theory
developed in this paper. For this example, we have q + 1 >
d. In addition, since the model structure contains an input-
driven term, it does not hold that ẍ contains ẋ as a factor: see
(53). It then follows from the factorization of Rq in (47) that
ẋ(0) 6= 0 is not a necessary condition for the full rankness of
Rq . Indeed we observe in our example that, even if ẋ(0) = 0,
we can still find an informative input by taking u̇(0) 6= 0.
Conversely, there is no input that makes ẋ(0) 6= 0 for all x0.

VII. CONCLUSIONS

In this paper we have provided necessary and sufficient
conditions for identifiability from the initial state, as well as
necessary and sufficient conditions for informativity from the
initial state for a class of nonlinear rational models. Param-
eter estimation from a transient response is of great interest
in many practical applications. In addition, for this same
class of models we have provided necessary and sufficient
conditions for identifiability from the input signal regardless

of the unknown initial condition. Sufficient conditions for
the generation of informative experiments from the input
have also been derived, and we have illustrated with an
example the difficulty of obtaining necessary and sufficient
informativity conditions for such case.

The properties that make an initial state and/or an input
globally informative at given θ are generic. But informativity,
as well as identifiability, refers to a given model structure at a
given parameter value; so for any given experiment there are
parameter values for which it is not informative. Since the
properties of identifiability and informativity should be valid
at the unknown real parameter, care must still be exercised
in avoiding noninformative experimental conditions.

APPENDIX

Lemma 1.1: Consider the model structure (6). The suc-
cessive derivatives of x for k ≥ 1 can all be written in the
form

x(k+1) = fk(θ, x, u, u̇, . . . , u
(k−1))ẋ

+G(x)Hk(θ, x, u, u̇, . . . , u
(k)) (53)

where Hk is a l-dimensional column vector.
Proof: The second derivative is given by

ẍ =
1

n(x)

{[
θT
∂φ

∂x
+
∂m

∂x
+
∂G

∂x
U − ∂n

∂x
ẋ

]
ẋ

+G(x)
∂U

∂u
u̇

}
By substituting for ẋ within the square bracket, this can be
rewritten in the desired form as

ẍ = f1(θ, x, u)ẋ+G(x)H1(x, u, u̇). (54)

Taking the time derivative of ẍ and substituting again yields

x(3) = f2(θ, x, u)ẋ+G(x)H2(θ, x, u, u̇) (55)

where the dependence of H2 on θ comes from the substitu-
tion of ẍ by (54) in a term involving G(x). We now proceed
by induction. Suppose we can write

x(k) = fk−1(θ, x, u, u̇, . . . , u
(k−2))ẋ

+G(x)Hk−1(θ, x, u, u̇, . . . , u
(k−1))

Taking the time derivative of this expression yields

x(k+1) =
dfk−1

dt
ẋ+ fk−1ẍ

+
∂G

∂x
Hk−1ẋ+G(x)

dHk−1

dt

Substituting ẍ by (54) in this expression, and grouping the
terms that have ẋ as factor and those that have G(x) as factor,
yields the expression (53).

The next Lemma gives, similarly, a general expression for
the derivatives of φ(x).



Lemma 1.2: Consider the model structure (6). The suc-
cessive derivatives of φ(x) for k ≥ 1 can all be written in
the form

φ(k) =
∂kφ

∂xk
ẋk (56)

+

k−1∑
l=1

∂k−lφ

∂xk−l
mk,k−l(θ, x, u, u̇, . . . , u

(k−2))ẋ

+
∂φ

∂x
G(x)Nk(θ, x, u, u̇, . . . , u

(k−1))

where Nk is a l-dimensional column vector.
Proof: We have φ̇ = ∂φ

∂x ẋ and

φ̈(x) =
∂2φ

∂x2
ẋ2 +

∂φ

∂x
ẍ

Substituting (54) for ẍ we get

φ̈(x) =
∂2φ

∂x2
ẋ2 +

∂φ

∂x
m2,1(θ, x, u)ẋ+

∂φ

∂x
G(x)N2(x, u, u̇)

(57)
which has the desired form for k = 2. We now proceed by
induction: we assume that (56) holds for some k, and we take
the time derivative. We compute separately the derivative of
the three lines of (56):
• the derivative of the first line yields

∂k+1φ

∂x(k+1)
ẋk+1 + 2

∂kφ

∂xk
ẋk−1ẍ =

∂k+1φ

∂x(k+1)
ẋk+1

+2
∂kφ

∂xk
ẋk−1[f1(θ, x, u)ẋ+G(x)H1(x, u, u̇)]

• the derivative of the second line yields
k−1∑
l=1

∂k−l+1φ

∂xk−l+1
mk,k−lẋ

2 +

k−1∑
l=1

∂k−lφ

∂xk−l
[
dmk,k−l

dt
ẋ+mk,k−lẍ]

After substituting for ẍ again, the second term becomes
k−1∑
l=1

∂k−lφ

∂xk−l
[
dmk,k−l

dt
ẋ+mk,k−lf1ẋ+mk,k−lG(x)H1]

• the derivative of the third line yields

∂2φ

∂x2
G(x)Nkẋ+

∂φ

∂x
G(x)

dNk
dt

+
∂φ

∂x

∂G(x)

∂x
Nkẋ

Regrouping the coefficients of the successive derivatives
∂k−lφ
∂xk−l yields the form (56).
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