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Abstract

In the present work a systematic methodology for computing dynamic output stabilizing feedback

control laws for nonlinear systems subject to saturating inputs is presented. In particular, the class

of Lur’e type nonlinear systems is considered. Based on absolute stability tools and a modified sector

condition to take into account input saturation effects, an LMI framework is proposed to design the

controller. Asymptotic as well as input-to-state and input-to-output (in a L2 sense) stabilizations are

addressed both in regional (local) and global contexts. The controller structure is composed by a linear

part, an anti-windup loop and a term associated to the output of the dynamic nonlinearity. Convex

optimization problems are proposed to the controller synthesis considering different optimization criteria.

A numerical example illustrates the potentialities of the methodology.

Keywords: Nonlinear control systems, Sector nonlinearities, Saturation, Dynamic output feedback,

LMI.

1 Introduction

The design of most practical control systems requires to consider the presence of the nonlinearities that are

inherent to the plant dynamics and/or to the physical actuator or sensor limitations, both in the analysis and
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in the synthesis phases. To cope with the presence of such nonlinearities, among the various existing nonlinear

control systems approaches, absolute stability theory has been considered in the literature for analysis and

synthesis of the so-called Lur’e systems ([1, 2]). More recently, the research on absolute stability has been

intensified, mainly due to the possibility of using the Linear Matrix Inequality (LMI) framework and the

existing related efficient numerical tools for computations [3].

Considering linear systems with saturating inputs, a large amount of works can be found in the literature.

We can cite, for instance the following ones (see also references therein): [4], [5] and [6], considering state

feedback control laws; [7], [8], [? ], [? ] and [? ] regarding linear dynamic output feedback controller

synthesis; [9], [10] and [11] addressing the anti-windup synthesis. On the other hand, just few works deal

with the problem of controlling nonlinear systems with saturating inputs in a systematic way. In the same line

of the papers cited above, LMI conditions have also been proposed to synthesize stabilizing control laws for

nonlinear systems subject to actuator amplitude limitations and for which the dynamics can be decomposed

into the feedback interconnection of a linear system with a sector bounded nonlinearity: [12],[13] and [14]

for precisely-known systems and [15] for some uncertain nonlinear systems. It should however be pointed

out that, as in [16, 17], the considered control law consists of the feedback of the systems states and of the

nonlinearity associated to the plant dynamics.

Our aim in the present work is to devise a systematic synthesis method to compute dynamic output feed-

back stabilizing controllers for Lur’e type nonlinear systems subject also to input saturation. The controller

structure is composed by a linear compensator presenting the following inputs: the plant output, an anti-

windup term (related to the input saturation) and the value of the plant sector bounded nonlinearity. Based

on this structure, on the use of a quadratic Lyapunov function, and on sector conditions, LMI conditions

to synthesize this kind of controllers in order to ensure asymptotic as well as input-to-state and input-to-

output (considering L2 input disturbance signals) stabilizations are proposed. Both the local (regional) and

the global stabilization cases are considered. Concerning the asymptotic stability, we will be interested in

ensuring the local stability of the closed-loop system in a specific region or, provided some additional hy-

pothesis are satisfied by the open-loop system, to ensure global asymptotic stability. In the input-to-state

and input-to output cases, we will be interested in guaranteeing that the trajectories of the system remain

bounded considering a L2 bound on the disturbance signal. ¿From the derived conditions convex optimiza-

tion problems are proposed in order to compute the controller matrices aiming at: the maximization of

the estimates of the basin of attraction of the closed-loop system, or the performance enhancement with a

guaranteed region of stability; the maximization of the bound on the disturbance for which it is possible to

ensure that the trajectories are bounded or, considering a given bound on the admissible disturbance, the

minimization of the L2 gain with respect to a regulated output.

It should be pointed out that similar control problems have been studied in [18], where the authors sepa-

rately consider a particular sector bounded nonlinearity (with dead-zone behavior) associated the dynamics
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of the plant or a static saturation nonlinearity, using in both cases a classical sector condition, which leads to

BMI stabilization conditions. Differently from that work, our approach consider simultaneously a dynamic

nonlinearity and a static input saturation. Furthermore, the proposed conditions will be stated directly in

LMI form. Thus, the proposed results can be thought as an additional contribution for the treatment of

more realistic nonlinear control systems, also in a more efficient computational way.

The paper is organized as follows. Section 2 presents the problem statement. Section 3 is concerned with

the internal stabilization (i.e. asymptotic stabilization) while section 4 addresses the external stabilization

(i.e input-to-state and input-to-output). Section 5 presents some convex optimization problems for the

dynamic controller synthesis. Numerical examples are presented and commented in section 6. The paper

finishes with some concluding remarks.

Notations. For two symmetric matrices, A and B, A > B means that A − B is positive definite. A′

denotes the transpose of A and He{A} = A+A′. A(i) and A(i,j) denote the i
th row and the element (i, j) of

matrix A, respectively. ⋆ stands for symmetric blocks; • stands for an element that has no influence on the

development. I denotes an identity matrix of appropriate order. diag{A,B} is the block-diagonal matrix
⎡

⎣

A 0

0 B

⎤

⎦.

2 Problem Statement

Consider a nonlinear continuous-time system represented by the Lur’e type system:

ẋ(t) = Ax(t) +Bu(t) +Gφ(z(t)) +Bww(t)

y(t) = Cx(t) +Dww(t)

z(t) = Lx(t)

(1)

where x(t) ∈ ℜn, u(t) ∈ ℜm are the state and the control input, respectively, w(t) ∈ ℜr is the disturbance,

y(t) ∈ ℜp correspond to the output and z(t) ∈ ℜq is the input to the nonlinear vector valued function

(map) φ(·) : ℜq → ℜq. A, B, Bw C, Dw, G and L are real constant matrices of appropriate dimensions. The

disturbance vector w is assumed to be limited in energy, that is, w(t) ∈ L2 and for some scalar δ, 0 ≤ 1
δ < ∞,

it follows that:

∥w∥22 =

∫ ∞

0
w(t)′w(t)dt ≤

1

δ
(2)

Regarding system (1) the following assumptions are considered:

Assumption 1 The nonlinearity φ(z) is continuous and verifies a cone bounded sector condition, i.e.,

φ(0) = 0 and there exists a symmetric positive definite matrix Ω ∈ ℜq×q such that

φ(z)′∆ (φ(z)− Ωz) ≤ 0, ∀z ∈ S̃1 ⊆ ℜq (3)

where ∆ ∈ ℜq×q is any diagonal matrix defined as follows:

∆ = diag(δl), δl > 0, ∀l = 1, . . . , q,
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The matrix Ω is supposed to be known. On the other hand, from the definition of ∆, we see that (3) is verified

if q independent classical sector conditions φ(l)(z)
′(φ(l)(z)−Ω(l)z) ≤ 0, ∀l = 1, . . . , q, are also verified. Thus,

as it will be seen in the sequel, the matrix ∆ will represent a degree of freedom in the controller design method

([15]). If S̃1
△
= ℜq, then the sector condition (3) is globally verified, otherwise, it is only locally verified.

Assumption 2 The system output y(t) and the nonlinearity φ(z(t)) are available for measurement.

Assumption 3 The control inputs are supposed to be bounded as follows:

−u0(i) ≤ u(i) ≤ u0(i), i = 1, . . . ,m (4)

In consequence of the control bounds, the actual control signal to be injected in the system is a saturated

one, i.e, considering the signal sent to the actuator given by v(t), we have

u(t) = sat(v(t)) (5)

where each component of sat(v) is defined, ∀i = 1, ...,m, by: sat(v)(i) = sat(v(i)) = sign(v(i))min(u0(i), |v(i)|).

Consider now a nonlinear dynamic output feedback controller with the following structure:

ẋc(t) = Acxc(t) +Bcuc(t) + Ec (sat(v(t))− v(t)) +Gcφ(z(t))

yc(t) = Ccxc(t) +Dcuc(t) + Fcφ(z(t))
(6)

where xc(t) ∈ ℜn is the controller state, uc(t) is the controller input and yc(t) is the controller output,

matrices Ac, Bc, Cc, Dc, Ec, Fc and Gc are of appropriate dimensions. The term Ec(sat(v(t)) − v(t))

corresponds to a static anti-windup loop to mitigate the undesirable effects of windup caused by input

saturation. The interconnection between the plant and the controller is given by: v(t) = yc(t), uc(t) = y(t).

Define now the following matrices:

A =

⎡

⎣

A+BDcC BCc

BcC Ac

⎤

⎦ ,B =

⎡

⎣

B

0

⎤

⎦ ,R =

⎡

⎣

0

I

⎤

⎦ ,G =

⎡

⎣

G

0

⎤

⎦ ,Bw =

⎡

⎣

Bw +BDcDw

BcDw

⎤

⎦ ,

K =
[

DcC Cc

]

, L =
[

L 0
]

and C =
[

C 0
]

.

Hence, considering an augmented state vector ξ(t) =
[

x(t)′ xc(t)′
]′

, the closed-loop system composed

by the connection of the system (1) and the controller (6) reads:

ξ̇(t) = Aξ(t) + (BFc +G+ RGc)φ(z(t))− (B+ REc)ψ(yc(t)) + Bww(t)

y(t) = Cξ(t) +Dww(t)

z(t) = Lξ(t)

(7)
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where

yc(t) = Kξ(t) + Fcφ(z(t)) +DcDww(t)

ψ(yc(t)) = yc(t)− sat(yc(t))
(8)

with (ψ(yc))(i)
△
= yc(i) − sat(yc)(i), i = 1, . . . ,m. Note that, ψ(yc) corresponds to a decentralized deadzone

nonlinearity.

In this paper, we focus on the following problems regarding the closed-loop system (7):

1. Internal Stabilization.

Considering w = 0, the asymptotic stabilization of the closed-loop system should be ensured. In

this sense, a relevant problem consists in designing the controller in order to maximize the region of

attraction of the closed-loop system or, when possible, to ensure the global asymptotic stability of

the origin. However, since in the general case the exact analytical characterization of the basin of

attraction is not possible [1], we will be interested in maximizing estimates of the basin of attraction.

2. External stabilization.

The objective in this case consists in ensuring that the trajectories of the system are bounded for

any disturbance satisfying (2) and, in addition, in providing an upper-bound for the L2-gain from the

disturbance w to the output y. In other words, we want to ensure input-to-state and input-to-output

stability. On the other hand, if w(t) = 0, ∀t > t1 ≥ 0, for some t1, it should be ensured that the

corresponding trajectories converge asymptotically to the origin. This means that for disturbances

satisfying (2), the trajectories never leave the region of attraction of the closed-loop system.

Regarding the problems above described, the design of the controller can be oriented in order to maximize

the region where the asymptotic stability of the closed-loop system is ensured, the disturbance tolerance or

the disturbance rejection.

3 Internal Stabilization

In this section a condition to address the asymptotic stabilization problem is presented. In this case, we

consider that the systems is disturbance free (w(t) = 0).

Before stating the main results, we recall a instrumental result to deal with deadzone nonlinearities.

With this aim consider a matrix H =
[

Hξ Hφ

]

∈ ℜm×(2n+q) and define the set

S2
△
=

⎧

⎨

⎩

⎡

⎣

ξ

φ(z)

⎤

⎦ ∈ ℜ2n+q; |[(K−Hξ) (Fc −Hφ)](i)

⎡

⎣

ξ

φ(z)

⎤

⎦ | ≤ u0(i), i = 1, ...,m

⎫

⎬

⎭

Hence, the following Lemma, concerning the nonlinearity ψ(yc) can be stated.
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Lemma 1 ([11]) If

⎡

⎣

ξ

φ(z)

⎤

⎦ ∈ S2 then the relation

ψ(yc)
′T (ψ(yc)−Hξξ −Hφφ(z)) ≤ 0 (9)

is verified for any matrix T ∈ ℜm×m diagonal and positive definite.

The inequality (9) can be seen as a modified(or generalized) sector condition, which hold specifically

for deadzone nonlinearities. It can be shown (see [11]) that condition (9) encompasses the classical sector

condition used, for instance in [18]. Furthermore, as it will be see in the sequel, in the case of regional

stabilization, it allows to obtain conditions in a true LMI form.

3.1 Regional (Local) Stabilization

In this case we consider the set S̃1 defined as follows:

S̃1
△
= {z ∈ ℜq ; |z(i)| ≤ ρ(i), ρ(i) > 0, i = 1, . . . , q}.

Since z(t) = Lx(t), it follows that z(t) ∈ S̃1 if and only if ξ(t) belongs to the set

S1 = {ξ ∈ ℜ2n ; |L(i)ξ| ≤ ρ(i), ρ(i) > 0, i = 1, . . . , q}.

Theorem 1 If there exist symmetric positive definite matrices X, Y ∈ ℜn×n, positive definite diagonal

matrices S ∈ ℜm×m, S∆ ∈ ℜq×q, matrices Â ∈ ℜn×n, B̂ ∈ ℜn×p, Ĉ, Ĥξ1, Ĥξ2 ∈ ℜm×n, Ĥφ ∈ ℜm×q,

D̂ ∈ ℜm×p, F̂ ∈ ℜm×q, Ĝ ∈ ℜn×q, and a scalar ν > 0 such that the following linear matrix inequalities are

verified
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 A+ Â′ +BD̂C J2 −BS + Ĥ ′
ξ1

⋆ He{Y A+ B̂C} J3 Ê + Ĥ ′
ξ2

⋆ ⋆ −2S∆ Ĥ ′
φ

⋆ ⋆ ⋆ −2S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (10)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X ⋆ ⋆ ⋆

I Y ⋆ ⋆

ΩLX ΩL 2S∆ ⋆

Ĉ(i) − Ĥξ1(i) D̂(i)C − Ĥξ2(i) F̂(i) − Ĥφ(i) ν u2
0(i)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0 i = 1, ...,m (11)

⎡

⎢

⎢

⎢

⎣

X ⋆ ⋆

I Y ⋆

L(i)X L(i) ν ρ2(i)

⎤

⎥

⎥

⎥

⎦

> 0 i = 1, ..., q (12)

6



where J1 = He{AX + BĈ}, J2 = GS∆ + BF̂ +XL′Ω and J3 = Ĝ+ L′Ω, then the dynamic controller (6)

with

Ac = V −1[Â− (Y AX + Y BĈ + V BcCX)](U ′)−1

Bc = V −1(B̂ − Y BD̂)

Cc = (Ĉ − D̂CX)(U ′)−1

Dc = D̂, Ec = −V −1(ÊS−1 + Y B)

Gc = −V −1(−ĜS−1
∆ + Y G+ Y BFc)

Fc = F̂S−1
∆

(13)

where matrices U and V verify V U ′ = I−Y X, guarantees that the region E(P, ν−1) = {ξ ∈ ℜ2n; ξ′P ξ ≤ ν−1}

with P =

⎡

⎣

Y V

V ′ •

⎤

⎦ is a domain of asymptotic stability for the closed-loop system (7).

Proof: Define a candidate Lyapunov function V (t) = ξ′(t)P ξ(t), with P =

⎡

⎣

Y V

V ′ •

⎤

⎦ and P−1 =

⎡

⎣

X U

U ′ •

⎤

⎦ . It follows that:

V̇ (t) = 2ξ′(t)A′P ξ(t)− 2ψ′(yc(t))(B+ REc)
′P ξ(t) + 2φ′(z(t))(BFc +G+ RGc)

′P ξ(t) (14)

Suppose now that

V̇ (t)− 2ψ(yc(t))
′T (ψ(yc(t))−Hξξ(t)−Hφφ(z(t)))− 2φ(z(t))′∆(φ(z(t))− ΩLξ(t)) < 0 (15)

Hence, from Lemma 1 and Assumption 1, provided that ξ(t) ∈ S1 ∩ S2, it follows that V̇ (t) < 0.

The expression (15) is equivalent to η(t)′Γη(t) < 0 with:

η(t) =

⎡

⎢

⎢

⎢

⎣

ξ(t)

φ(z(t))

ψ(yc(t))

⎤

⎥

⎥

⎥

⎦

and Γ =

⎡

⎢

⎢

⎢

⎣

He{A′P} PJ4 + L′Ω∆ −PJ5 +H ′
ξT

⋆ −2∆ H ′
φT

⋆ ⋆ −2T

⎤

⎥

⎥

⎥

⎦

(16)

where J4 = G+ RGc + BFc and J5 = B+ REc.

Next we show that (15) is equivalent to Γ < 0 and then it assures that V̇ (t) < 0, provided ξ(t) ∈ S1 ∩S2.

With this aim, define a matrix Π =

⎡

⎣

X I

U ′ 0

⎤

⎦ ([19]). Note that, from condition (11), it follows that I−Y X

is nonsingular, which implies that is always possible to compute square and nonsingular matrices V and U

such that the equation V U ′ = I − Y X is verified. This fact ensures that Π is nonsingular.

Defining S∆ = ∆−1 and S = T−1 and pre and post-multiplying matrix Γ by Diag(Π′, S′
∆, S

′) and

Diag(Π, S∆, S) respectively, the following matrix is obtained
⎡

⎢

⎢

⎢

⎣

He{Π′A′PΠ} Π′PJ4S∆ +Π′L′Ω −Π′PJ5S +Π′H ′
ξ

⋆ −2S∆ S∆H ′
φ

⋆ ⋆ −2S

⎤

⎥

⎥

⎥

⎦

. (17)
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Considering now the following change of variables:

Â = Y AX + Y BDcCX + V BcCX + Y BCcU ′ + V AcU ′,

B̂ = Y BDc + V Bc, Ĉ = CcU ′ +DcCX, D̂ = Dc,

Ê = −(Y BS + V EcS), F̂ = FcS∆,

Ĝ = Y GS∆ + V GcS∆ + Y BFcS∆, Ĥφ = HφS∆

Ĥξ1 = Hξ1X +Hξ2U ′, Ĥξ2 = Hξ1

it follows that

Π′PΠ =

⎡

⎣

X I

I Y

⎤

⎦ ; Π′PJ5S =

⎡

⎣

BS

−Ê

⎤

⎦ ; Π′PJ4S∆ =

⎡

⎣

GS∆ +BF̂

Ĝ

⎤

⎦ ;

Π′H ′
ξ =

⎡

⎣

Ĥ ′
ξ1

Ĥ ′
ξ2

⎤

⎦ ; Π′PAΠ =

⎡

⎣

AX +BĈ A+BD̂C

Â Y A+ B̂C

⎤

⎦ .

(18)

Hence, since Π, S∆ and S are nonsingular, it follows that (10) is equivalent to Γ < 0, which, from (15),

implies that V̇ (t) < 0 holds with the matrices Ac, Bc, Cc, Dc, Ec, Fc and Gc defined as in (13), provided

ξ(t) ∈ S1 ∩ S2.

Consider now E(P, ν−1). Pre and post-multiplying inequalities (11) respectively by

⎡

⎢

⎢

⎢

⎣

(Π−1)′ 0 0

0 ∆ 0

0 0 1

⎤

⎥

⎥

⎥

⎦

and its transpose, and since KΠ = [DcCX +CcU ′ DcC] = [Ĉ D̂C], it follows that condition (11) ensures

that E(P, ν−1) ⊂ S2 (see [12]). By similar reasoning, (12) implies that E(P, ν−1) ⊂ S1. Thus, if relations

(10),(11),(12) are verified, one effectively obtains V̇ (t) < 0, ∀ξ ∈ E(P, ν−1), which concludes the proof. ✷

Remark 1 The result of the Theorem can be straightforwardly extended to treat the local stabilization when

the nonlinearity φ(z(t)) globally satisfies the sector condition (3), i.e., when S̃1
△
= ℜq. For this, it suffices

to consider Hφ = Fc in condition (10), to eliminate the third row and third column matrices in (11) and to

eliminate (12).

3.2 Global Stabilization

In this case we consider that the open-loop matrix A is Hurwitz and the set S̃1
△
= ℜq, i.e. the nonlinearity

φ(z) is such that the sector condition (3) is globally verified.

Corollary 1 If there exist symmetric positive definite matrices X, Y ∈ ℜn×n, positive definite diagonal

matrices S ∈ ℜm×m, S∆ ∈ ℜq×q and matrices Â ∈ ℜn×n, B̂ ∈ ℜn×p, Ĉ, D̂ ∈ ℜm×p, F̂ ∈ ℜm×q and

8



Ĝ ∈ ℜn×q such that the following linear matrix inequalities are verified

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 A+ Â′ +BD̂C J2 −BS + Ĉ ′

⋆ He{Y A+ B̂C} J3 Ê + C ′D̂

⋆ ⋆ −2S∆ F̂ ′

⋆ ⋆ ⋆ −2S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (19)

⎡

⎣

X I

I Y

⎤

⎦ > 0 (20)

then the dynamic controller (6) with the matrices defined as in (13), where matrices U and V verify V U ′ =

I − Y X, guarantees the global asymptotic stability of the origin of the closed-loop system (7).

Proof: Consider Hξ = K and Hφ = Fc. It follows that the sector condition

ψ(yc(t))
′T (ψ(yc(t))−Kξ(t)− Fcφ(z(t))) ≤ 0

is verified for all ξ(t) ∈ ℜ2n and φ(z(t)) ∈ ℜq . In this case, it is easy to see that (19) corresponds to (10)

and the global asymptotic stability of the origin follows. Inequality (20) ensures that I−Y X is nonsingular.

✷

4 External Stabilization

In this section we focus on the input-to-state and input-to-output stabilizations. Considering that w(t)

satisfies (2), we provide conditions to compute a controller in order to ensure that the state trajectories are

bounded and, in addition, to ensure finite L2 gain between the disturbance input to the regulated output. I

this case, we assume that ξ(0) = 0.

Since w(t) is now supposed to be different from zero, a slightly modified version of Lemma 1 has to be

considered as follows.

Lemma 2 If

⎡

⎣

ξ

φ(z)

⎤

⎦ ∈ S2 then the relation

ψ(yc)
′T (ψ(yc)−Hξξ −Hφφ(z)−DcDww) ≤ 0 (21)

is verified for any matrix T ∈ ℜm×m diagonal and positive definite.

4.1 Regional Stabilization

Theorem 2 Suppose that ||w||22 ≤ δ−1 and ξ(0) = 0. If there exist symmetric positive definite matrices

X, Y ∈ ℜn×n, positive definite diagonal matrices S ∈ ℜm×m, S∆ ∈ ℜq×q, matrices Â ∈ ℜn×n, B̂ ∈ ℜn×p,
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Ĉ, Ĥξ1, Ĥξ2 ∈ ℜm×n, Ĥφ ∈ ℜm×q, D̂ ∈ ℜm×p, F̂ ∈ ℜm×q, Ĝ ∈ ℜn×q, and scalars δ > 0 and γ > 0 such

that the following linear matrix inequalities are verified
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 A+ Â′ +BD̂C J2 −BS + Ĥ ′
ξ1 Bw +BD̂Dw XC ′

⋆ He{Y A+ B̂C} J3 Ê + Ĥ ′
ξ2 Y Bw + B̂Dw C ′

⋆ ⋆ −2S∆ Ĥ ′
φ 0 0

⋆ ⋆ ⋆ −2S D̂Dw 0

⋆ ⋆ ⋆ ⋆ −Ir D′
w

⋆ ⋆ ⋆ ⋆ ⋆ −γIq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (22)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

X ⋆ ⋆ ⋆

I Y ⋆ ⋆

ΩLX ΩL 2S∆ ⋆

Ĉ(i) − Ĥξ1(i) D̂(i)C − Ĥξ2(i) F̂(i) − Ĥφ(i) δ u2
0(i)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

> 0 i = 1, ...,m (23)

⎡

⎢

⎢

⎢

⎣

X ⋆ ⋆

I Y ⋆

L(i)X L(i) δρ2(i)

⎤

⎥

⎥

⎥

⎦

> 0 i = 1, ..., q (24)

where J1 = He{AX + BĈ}, J2 = GS∆ + BF̂ +XL′Ω and J3 = Ĝ+ L′Ω, then the dynamic controller (6)

with matrices computed as in (13) where matrices U and V verify V U ′ = I − Y X, is such that

a. the closed-loop trajectories remain bounded in the set E(P, δ−1) with

P =

⎛

⎝

Y V

V ′ •

⎞

⎠ (25)

b. ∥y∥22 < γ∥w∥22.

c. if there exist t1 such that w(t) = 0, ∀t > t1 ≥ 0, ξ(t) converges asymptotically to the origin, i.e.

E(P, δ−1) is included in the basin of attraction of the closed-loop system and it is a contractive set.

Proof. Let V (t) = ξ(t)′P ξ(t) be a candidate Lyapunov function and let V̇ (t) be its time-derivative

along system (7) trajectories. Define now J (t) = V̇ (t) − w′(t)w(t) + 1
γ y

′(t)y(t). Using the same similarity

transformation applied in the proof of Theorem 1, the relation (22) implies that J (t) < 0, provided ξ(t) ∈

S1∩S2. Thus, in this case, one obtains that
∫ T
0 J (t)dt = V (T )−V (0)−

∫ T
0 w′(t)w(t)dt+ 1

γ

∫ T
0 y′(t)y(t)dt < 0,

∀ T . Hence, it follows that:

• since ξ(0) is supposed to be zero, V (0) = 0 and ξ(T )′P ξ(T ) = V (T ) < ∥w∥22 ≤ δ−1, ∀T > 0, i.e. the

trajectories of the system do not leave the set E(P, δ−1) for w(t) satisfying (2);

• for T → ∞, ∥y∥22 < γ∥w∥22;

10



• if w(t) = 0, ∀t > t1 ≥ 0, then V̇ (t) < − 1
γ y

′(t)y(t) < 0, which ensures that ξ(t) → 0 as t → ∞.

On the other hand, LMIs (23) and (24) ensure that E(P, δ−1) ⊂ S1 ∩ S2. Hence, this fact together with

the satisfaction of (22) ensure that the trajectories effectively never leave the set E(P, δ−1) which concludes

the proof.

4.2 Global Stabilization

As in section 3.2, in this case we consider the set S̃1
△
= ℜq and the open-loop matrix A is Hurwitz.

Corollary 2 If there exist symmetric positive definite matrices X, Y ∈ ℜn×n, positive definite diagonal

matrices S ∈ ℜm×m, S∆ ∈ ℜq×q and matrices Â ∈ ℜn×n, B̂ ∈ ℜn×p, Ĉ, D̂ ∈ ℜm×p, F̂ ∈ ℜm×q and

Ĝ ∈ ℜn×q such that the following linear matrix inequalities are verified
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 A+ Â′ +BD̂C J2 −BS + Ĉ ′ Bw +BD̂Dw XC ′

⋆ He{Y A+ B̂C} J3 Ê + C ′D̂ Y Bw + B̂Dw C ′

⋆ ⋆ −2S∆ F̂ ′ 0 0

⋆ ⋆ ⋆ −2S D̂Dw 0

⋆ ⋆ ⋆ ⋆ −Ir D′
w

⋆ ⋆ ⋆ ⋆ ⋆ −γIq

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (26)

⎡

⎣

X I

I Y

⎤

⎦ > 0 (27)

then the dynamic controller (6) with the matrices defined as in (13), where matrices U and V verify V U ′ =

I − Y X, guarantees that

a. the closed-loop trajectories remain bounded for any any w(t) ∈ L2.

b. ∥z∥22 < γ∥w∥22.

c. if there exist t1 such that w(t) = 0, ∀t ≥ t1 ≥ 0, ξ(t) converges asymptotically to the origin.

Proof: As in the proof of Corollary 1, consider Hξ = K and Hφ = Fc. It follows that the sector condition

ψ(yc(t))
′T (ψ(yc(t))−Kξ(t)− Fcφ(z(t))−DcDww) ≤ 0

is verified for all ξ(t) ∈ ℜ2n and φ(z(t)) ∈ ℜq . In this case, it is easy to see that (26) corresponds to (22)

and the global asymptotic stability of the origin follows.✷

Remark 2 In addition to the fact of introducing additional degrees of freedom in the synthesis problem,

another important role of the anti-windup term in the controller (6) is that it allows to convexify the problem,

i.e. to obtain true LMI conditions. Note that if Ec is not considered, it is not be possible to eliminate the

nonlinear term Y GS∆ using an auxiliary variable Ĝ.
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Remark 3 The same comments done in Remark 2 for the anti-windup term apply for the presence of the

nonlinearity φ(z) in the controller. Indeed, without Gc and/or Fc, the nonlinear term Y GS∆ would last in

the conditions. Hence, if the nonlinearity φ(z) cannot be measured or evaluated, a BMI condition have to be

considered. Note however that, since S∆ is a diagonal matrix, the bilinearity is not too severe. In particular,

if q = 1 (which is in general the case) or q = 2, the solution to the BMI can be easily found solving LMI

problems in a unidimensional or a bidimensional grid on the variable S∆. In the generic case, some LMI

iterative procedures, where either Y or S∆, are fixed in each step can be considered in order to determine the

dynamic controller.

5 Optimization Problems

5.1 Enlargement of the stability region

An implicit objective in the synthesis of the stabilizing controller (6) can be the maximization of the region

(basin) of attraction of the closed-loop system. Nevertheless, the exact characterization of this region is

in general not possible and it depends directly on the controller that is being synthesized. The idea is

therefore to compute a controller leading to a maximized estimate of the region of attraction. In other

words, we want to compute (6) such that the associated region of asymptotic stability E(P, ν−1) is as large

as possible considering some size criterion. This can be addressed, for instance, if we consider a polyhedral

set Ξ described by the convex hull of its vertices:

Ξ
△
= Co{v1, v2, . . . , vnr

}, vl ∈ ℜ2n, l = 1, . . . , nr

and a scaling factor β. Hence, recalling Theorem 1, we aim at searching for matricesX,Y, Â, B̂, Ĉ, D̂, Ê, F̂ , Ĝ, Ĥξ

and Ĥφ in order to obtain β Ξ ⊂ E(P, ν−1) with β as large as possible.

The vectors vl can in fact be viewed as directions in which we want to maximize the region of attraction.

Considering that βvl ∈ E(P, ν−1) is equivalent to

βv′lPvlβ ≤ ν−1 (28)

and considering η = 1/β2, it follows that the maximization of the ellipsoid E(P, ν−1) along the directions vl

is equivalent to the minimization of η. Hence, for a given value ν > 0, E(P, ν−1) can be maximized along the

directions given by generic vectors vl =
[

v′l1 v′l2

]′

where vl1 ∈ ℜn and vl2 ∈ ℜn, by solving the following

12



convex optimization problem:

min
V,η

η

subject to

(i)

⎡

⎢

⎢

⎢

⎣

ν−1 η v′l1 v′l1Y + v′l2V
′

vl1 X I

Y vl1 + V vl2 I Y

⎤

⎥

⎥

⎥

⎦

≥ 0

l = 1, . . . , r

(10), (11) and (12),

(29)

where X and Y are given matrices verifying the conditions of Theorem 1.

In order to prove this, it suffices to apply Schur’s complement in (28) and, to pre and post multiply the

obtained matrix inequality respectively by Θ =

⎡

⎢

⎢

⎢

⎣

1 0 0

0 I 0

0 Y V

⎤

⎥

⎥

⎥

⎦

and Θ′.

It is worth noticing that matrix V appears explicitly in (29). In this case, once V is obtained, it should

be verified a posteriori if it is indeed invertible. Alternatively, a constraint of type V + V ′ > 0 (or < 0) can

be incorporated in the optimization problem to ensure that V is nonsingular.

On the other hand, in practice, we are mainly interested in maximizing the region of stability in directions

associated to the states of the plant. In this case the vectors vl assume the form
[

v′l1 0
]′

and, from (28),

it follows that (i) in (29) can be replaced by the constraint:

v′l1Y vl1 ≤ ν−1 η, l = 1, . . . , r (30)

5.2 Performance Improvement

Let Ξ be a given set in the state space, for which we want to ensure that ∀ξ(0) ∈ Ξ, ξ(t) → 0 as t → ∞.

Among all the feasible controllers ensuring that, one may be interested in improving the performance of the

closed-loop system.

A natural performance measure is given by the following quadratic criterion on plant states:

JQ =

∫ ∞

0
x(t)′Qx(t)dt where Q = Q′ ≥ 0, Q ∈ ℜn×n.

In this case, if

V̇ +
1

γ
ξ′

⎡

⎣

I

0

⎤

⎦Q
[

I 0
]

ξ < 0, (31)

it follows that JQ < γV (0) < γ ν−1, ∀ξ (0) ∈ E(P, ν−1).

13



Actually, (31) is satisfied if:

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 A+ Â′ +BD̂C X(Q1/2) J2 −BS + Ĥ ′
ξ1

⋆ He{Y A+ B̂C} (Q1/2) J3 Ê + Ĥ ′
ξ2

⋆ ⋆ −γI 0 0

⋆ ⋆ ⋆ −2S∆ Ĥ ′
φ

⋆ ⋆ ⋆ ⋆ −2S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0 (32)

Another interesting performance criterion is the maximization of the exponential convergence of the

trajectories. Note that if we ensure that

V̇ + µξ′P ξ < 0 (33)

it follows that V (t) < e−µtV (0), ∀ξ (0) ∈ E(P, ν−1). This fact guarantees exponential convergence of the

trajectories to the origin with a rate given by µ. The relation (33) is satisfied if

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

J1 + µX A+ Â′ +BD̂C + µI J2 −BS + Ĥ ′
ξ1

⋆ He{Y A+ B̂C}+ µY J3 Ê + Ĥ ′
ξ2

⋆ ⋆ −2S∆ Ĥ ′
φ

⋆ ⋆ ⋆ −2S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

< 0, (34)

Note that (34) ensures that all the eigenvalues of matrix A have real part smaller than −µ/2.

The following convex optimization problem can therefore be formulated to take into account performance

issues with a guaranteed region of stability:

max µ

subject to
⎡

⎢

⎢

⎢

⎣

ν−1 v′l1 v′l1Y + v′l2V
′

vl1 X I

Y vl1 + V vl2 I Y

⎤

⎥

⎥

⎥

⎦

> 0

l = 1, . . . , r

(11), (12) and (32) (or (34))

(35)

When the objective is the maximization of the exponential convergence of the trajectories (i.e. (34) is

considered), problem (35) can be efficiently solved as a GEVP ([3]).

Remark 4 Condition (34) can also be used to adapt the convex optimization problem (29) in order to

maximize the size of E(P, ν−1) while guaranteeing a pre-specified degree of exponential convergence inside it.

For that, it suffices to replace condition (10) by (34), with a fixed value µ > 0.
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5.3 Disturbance Tolerance

The idea consists in maximizing the bound on the disturbance, for which we can ensure that the system

trajectories remain bounded. This can be accomplished by the following optimization problem.

min δ

subject to (22), (23) and (24)
(36)

Note that, in this case, we are not interested in the value of γ. Indeed, γ will assume a finite value to

ensure that (22) is verified.

5.4 Disturbance Rejection

For an a priori given bound on the L2 norm of the admissible disturbances (given by 1
δ ), the idea consists

in minimizing the upper bound for the L2-gain of from w(t) to y(t). This can be obtained from the solution

of the following optimization problem:

min γ

subject to (22), (23) and (24) (or (26) and (27))
(37)

6 Numerical Examples

Consider the following data for the nonlinear system (1):

A =

⎡

⎣

1 −1

1 −3

⎤

⎦ , B =

⎡

⎣

2

1

⎤

⎦ , C =
[

1 0
]

, Dw = 0

G =

⎡

⎣

0

1

⎤

⎦ , L =
[

1 0
]

,Ω = 1.4, u0 = 2.

In the sequel we illustrate the application of the results of sections 3 and 4 as well as the optimization

problems proposed in section 5.

6.1 Internal Stabilization Problem

Since A is not Hurwitz, only local (regional) stabilization is possible. Thus, we first solve the convex problem

(29), with µ = 1 (see Remark 4), and with Ξ = Co

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

1

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

1. This choice corresponds to maximize

E(P, ν−1) along the directions associated to the plant states.

1Considering that the eigenvalues of A are given by ai + jbi, an additional constraint to ensure that ℜ(ai) ≥ −10 and

atan( |bi|
|ai|

) ≤ 45o has been considered to guarantee well-conditioned solutions.
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ν z ∈ S̃1, with ρ = 1.8 z ∈ ℜp

β Area β Area

10 1.7973 10.7317 4.7221 77.3880

Table 1: Enlargements for ν = 10

For ν = 10, Table 1 shows the obtained scaling factor of Ξ and the area of the intersection of E(P, ν−1)

with the hyperplane defined by the plant states, denoted as E(Y, ν−1) (the area is given by π
√

det((νY )−1))).

Two cases are considered. In the first one the nonlinearity φ(·) is suppose to be locally verified while in

the second it is globally verified. As expected, a larger domain of stability is obtained when φ(·) is globally

verified. Figure 1 shows the cut in the plane defined by the plant states of ellipsoidal sets obtained for

ν = 10.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 1: E(Y, 10−1) for φ locally (- -) and globally (-.) verified

Let us now consider, for ν = 1, the minimization of the upper-bound γ for the quadratic criterion

JQ, with Q =

⎡

⎣

1 0

0 0

⎤

⎦, by solving the convex optimization problem (35). In this case, we consider

Ξ = Co

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

κ

0

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0

κ

0

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, where κ > 0 may assume different values. Tables 2 and 3 show results obtained

when φ(·) is locally and globally verified, respectively2. By comparing the two tables, we observe again

2“-” denotes infeasibility of the LMIs
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better results when the sector condition on φ(·) is globally verified, since smaller guaranteed performances

are obtained for greater values of κ in Table 3. Now, in each table it can also be noticed a trade-off between

the size of the guaranteed region of stability and the upper-bound for JQ. In fact, the greater is κ and, in

consequence, the area of the obtained E(Y, ν−1), the worse is the upper-bound obtained for JQ.

κ γ Area

1 0.1788 3.3449

1.5 0.7395 7.5471

1.79 1.4406 10.2270

1.80 - -

Table 2: Guaranteed quadratic performance with ν = 1 and for φ locally verified

κ γ Area

1 0.1739 3.3698

3 11.1319 30.8500

4.73 42958 77.6659

4.74 - -

Table 3: Guaranteed quadratic performance with ν = 1 and for φ globally verified

Table 4 shows, for κ = 1 and ν = 1, the controllers parameters when φ(·) is locally or globally verified.

z ∈ S̃1, with ρ = 1.8 z ∈ ℜp

Ac

⎡

⎣

−7.9032 0.000845

0.99099 −2.3811

⎤

⎦

⎡

⎣

−7.8989 0.002745

0.61055 −2.382

⎤

⎦

Bc

⎡

⎣

0.17907

349.6523

⎤

⎦

⎡

⎣

0.3777

346.2083

⎤

⎦

Cc

[

−0.0041914 −0.0073054
] [

−0.0011032 −0.0074306
]

Dc -4.8779 -4.8859

Ec

⎡

⎣

−0.22739

−92.0092

⎤

⎦

⎡

⎣

−0.37372

−90.2543

⎤

⎦

Fc -0.10961 -0.2020

Gc

⎡

⎣

−0.12097

−80.0964

⎤

⎦

⎡

⎣

1.5226

−72.0697

⎤

⎦

Table 4: Controllers parameters for κ = 1
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6.2 Disturbance Tolerance and Rejection

Considering the optimization problem (36), the minimal value of δ (i.e. the maximal bound on the input

disturbance) for which it is possible to find a controller (considering the conditions given by Theorem 2)

that ensures the state trajectories are bounded, is given by 0.4471 .

On the other hand, considering that the bound on the admissible disturbances is given by δ−1, in Table

5 the obtained values for γ solving problem (37) for different values of δ are shown. Note that, as expected,

greater is δ (smaller is the admissible given disturbance bound), smaller is the upper bound on the L2 gain

from w to y (i.e. higher is the disturbance rejection).

δ γ

0.4471 2695.2

0.4500 87.6956

0.5000 6.1169

0.6000 1.9992

0.7000 1.0088

0.8000 0.6119

0.9000 0.4122

1.0000 0.2969

2.0000 0.0484

10.0000 0.0015

Table 5: Tradeoff γ × δ

For δ = 1, from the solution of problem (37), the following controller matrices are obtained3.

Ac =

⎡

⎣

−11.4627 −4.4814

−141.2563 −73.1282

⎤

⎦ , Bc =

⎡

⎣

−21780.8804

43561.7786

⎤

⎦ , Ec =

⎡

⎣

−0.0051229

−0.0068569

⎤

⎦ ,

Gc =

⎡

⎣

29041.3842

−58082.7748

⎤

⎦ , Cc =
[

−1254.7592 −627.3797
]

,

Dc =
[

−47.266
]

, F c =
[

−0.027384
]

In order to illustrate the dynamic behavior achieved with this controller, we consider that the nonlinearity

is given by

φ(z) =
1.4× 1.8

π
sin

( π

1.8
z
)

3Considering that the eigenvalues of A are given by ai + jbi, an additional constraint to ensure that ℜ(ai) ≥ −100 and

atan( |bi|
|ai|

) ≤ 45o has been considered to guarantee well-conditioned solutions.
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Note that, considering that z ∈ S̃1 with ρ = 1.8, this nonlinearity belongs locally to a sector defined by

Ω = 1.4.

Figures 2 and 3 depict the simulation results for the closed-loop system, considering w(t) as a pulse signal

defined as follows:

w(t) =

⎧

⎨

⎩

10 if 0 < t ≤ 0.01

0 if t > 0.01

which gives ||w||22 = 1. Although the control signal remains saturated for some time after disturbance action

stops, it can be seen that the disturbance is rejected. This shows that the controller ensures the trajectories

remain inside the region of attraction of the closed-loop system

0 0.05 0.1 0.15 0.2
−0.05

0

0.05

0.1

0.15

0.2

Figure 2: System Output

7 Conclusion

In the present work we have addressed the stabilization problem of Lur’e type nonlinear systems subject to

input saturation. Constructive LMI results allowing to compute a nonlinear dynamic controller having as

inputs both the plant output and the output of the dynamic nonlinearity have been proposed. The results

regards the internal (asymptotic) as well as the external (input-to-state and input-to-output) stabilization

of the closed-loop system, both in regional and global contexts.

Considering the internal stabilization, convex optimization problems with LMI constraints to compute

the controller aiming at maximizing an ellipsoidal estimate of the closed-loop domain of attraction or at

improving the performance of the closed-loop system while guaranteeing a pre-specified region of stability

have been formulated. Regarding the external stabilization, the LMI conditions are cast in optimization

problems to compute a controller to maximize the bound on the L2 norm of the admissible disturbances or,
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0 0.05 0.1 0.15 0.2
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−2

−1.5

−1

−0.5

0

0.5

Figure 3: Controller Output

when this bound is given, to design the controller in order to minimize the L2-gain between the disturbance

and the regulated output.

Thus, the proposed approach provides a systematic way to compute dynamic stabilizing controllers, along

with a formal characterization of sets of admissible initial states and disturbances, for the class of Lur’e type

nonlinear systems in the presence of saturating actuators.
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