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1 Introduction

Adaptive control has been a major field of
research in control theory and successful appli-
cations have been developed over the past half-
century (Bazanella et al., 2011). However, most
quotidian industry applications do not seem to
have assimilated this evolution. This gap between
practical applications and the adaptive control
theory, along with nonlinear behavior introduced
by adaptation mechanisms, propelled a surge of
interest in the data-driven alternative for con-
troller’s adaptation. Data-driven control differs
from adaptive control essentially by the fact that
parameter adjustments are always based on large
batches of data rather than on a single input-
output sample or a few samples. This means that
the nonlinear behavior introduced by adaptation
mechanisms is avoided, but there are other issues
that still prevent these methods to be safely used
by industrial applications.

One of the reasons is the fact that control per-
formance criteria are usually based on continuous
time domain response requirements, while the ref-
erence model used by data-driven control meth-
ods must be the translation of these requirements
into a discrete time transfer function. To illustrate
that, consider the case of settling time: it is known
that the settling time is proportional to the domi-
nant pole of the system. So, if one wants to deter-
mine a continuous transfer function for the desired
response of the system, the dominant pole of the
reference model needs to be chosen as the inverse
of 1/4 or 1/5 of the settling time. However, when
dealing with discrete time transfer functions, the
pole position also depends on the sampling time,
which means that a dominant pole in certain posi-
tion can represent either a fast response or a slow
one.

Another reason, and perhaps the most im-
portant one, is the fact that the whole theory of

data-driven and adaptive control is based on the
hypothesis that the controller class chosen to be
tuned is such that the desired response is achiev-
able. This means that the user needs to choose
the controller class and the reference model to
match this condition or at least get close to it.
Matching the condition requires the knowledge of
the process class (Bazanella et al., 2011; Eckhard
et al., 2009). Without this knowledge, the de-
signer needs to know some important character-
istics of the process when choosing the reference
model in order to obtain a response close to the
desired one. If this is not considered then data-
driven methods—especially the direct ones such as
the Virtual Reference Feedback Method (VRFT)
(Campi et al., 2002) and the Non-iterative Corre-
lation based Tuning (CbT) (Karimi et al., 2007)—
are still not safe to be used in industrial applica-
tions.

This work presents some contributions for ref-
erence model control methods, specially direct
data-driven control methods, in order to make
them more attractive for industrial applications.
The automation of the reference model choice,
based on an intermediate step of identification and
ratios obtained through three performance crite-
ria specified by the user, is the focus of this work.
Besides, since PID controllers are widely found in
industry (Ogata, 2009), our algorithm is simpli-
fied considering only these controllers and systems
where they can achieve a good performance.

This paper is organized as follows. Section 2
presents some necessary definitions, while in Sec-
tion 3 some control issues are presented such as
the performance criteria addressed by our algo-
rithm and some concerns on the reference model
that will be derived from the procedure. Section 4
presents how the algorithm chooses the reference
model between three different classes of models
based on an identified model of the process and
on the control criteria defined by the user. In
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Section 5 the results of an application of a di-
rect data-driven control method which uses the
proposed algorithm to define the reference model
are shown, and in Section 6 some conclusions and
future work are presented.

2 Preliminaries

Consider a linear time-invariant discrete-time
single-input-single-output process

y(t) = G0(z)u(t) + v(t)

= G0(z)u(t) +H0(z)w(t), (1)

where z is the forward-shift operator, G0(z) is the
process transfer function, u(t) is the control input,
H0(z) is the noise model, and w(t) is zero mean
white noise with variance σ

2

e . Both transfer func-
tions, G0(z) and H0(z), are rational and causal.

The task is to tune the parameter vector
ρ ∈ ℜ

d of a linear time-invariant controller
C(z, ρ) in order to achieve a desired closed-loop
response. We assume that this controller belongs
to a given user-specified controller class C such
that C(z, ρ)G0(z) has positive relative degree for
all C(z, ρ) ∈ C; equivalently, the closed loop is not
delay-free. The control action u(t) can be written
as

u(t) = C(z, ρ)(r(t)− y(t)), (2)

where r(t) is a reference signal, which is assumed
to be quasi-stationary and uncorrelated with the
noise, that is Ē [r(t)w(s)] = 0 ∀t, s, and

Ē[f(t)] , lim
N→∞

1

N

N
∑

t=1

E[f(t)]

with E[·] denoting expectation (Ljung, 1999). The
system (1)-(2) in closed loop becomes

y(t, ρ) = T (z, ρ)r(t) + S(z, ρ)v(t)

T (z, ρ) =
C(z, ρ)G0(z)

1 + C(z, ρ)G0(z)

= C(z, ρ)G0(z)S(z, ρ)

S(z, ρ) =
1

1 + C(z, ρ)G0(z)

where the dependence on the controller parameter
vector ρ is now made explicit in the output signal
y(t, ρ).

Model Reference control design consists of
specifying a“desired”closed-loop transfer function
M(z), which is known as the reference model, and
then solving the following optimization problem

min
ρ

J
MR(ρ) (3)

J
MR(ρ) , Ē [(T (z, ρ)−M(z))r(t)]

2
. (4)

The optimal controller is defined as C(z, ρMR)
with

ρ
MR = argmin

ρ
J
MR(ρ).

It is assumed that the user can collect a batch
of data from the process (1)

Z
N = [u(1), y(1), . . . , u(N), y(N)].

His/her task is then to estimate the optimal pa-
rameters of the controller C(z, ρMR) from these
data.

3 Control Issues

3.1 Choice of controller structure

Data-driven control methods can be used to
estimate a large variety of controllers. Most
of them have the restriction of controllers be-
ing linear in the parameters, as is the case of
(Hjalmarsson et al., 1998; Karimi et al., 2004;
Campi et al., 2002), but there are also the possi-
bility of using more general structures as pointed
out in (Sala and Esparza, 2005a; van Heusden
et al., 2011) and used in (Campestrini et al., 2012).
For the proposed automated choice of the ref-
erence model, the focus is on PI and PID con-
trollers, since they are linear in the parameters
and for this reason can be tuned using different
data-driven methods. Besides that, the integral
action of PI/PID controllers leads to null steady-
state error, which is usually a concern when de-
signing a controller for reference tracking.

The control law of an ideal PID controller is
given by

u(t) = Kpe(t) +Ki

∫ t

0

e(τ)dτ +Kd

de(t)

dt

(5)

where the task of the designer is to tune Kp, Ki

and Kd, the proportional, integral and derivative
gains, respectively. The signal u(t) is the control
signal, which is applied to the process to be con-
trolled, and e(t) is the error between the reference
signal and the output of the process.

Applying the Euler method to (5), the dis-
crete PID controller C(z) = U(z)/E(z) is given
by

C(z,Kp,Ki,Kd) = Kp +KiTs

1

1− z
−1

+
Kd

Ts

(1− z
−1),

C(z,Kp,Ki,Kd) = [Kp Ki Kd]





1
Ts

1−z−1

1−z−1

Ts



 ,

C(z, ρ) = ρ
T
C̄(z). (6)

where ρ = [Kp Ki Kd]
T and Ts is the sampling

time. Notice that, with the choice of C̄(z) made in
(6), ρ is the vector containing exactly the contin-
uous PID controller gains the user wants to find.

Anais do XX Congresso Brasileiro de Automática 
Belo Horizonte, MG, 20 a 24 de Setembro de 2014

1089



3.2 Performance criteria for control systems

In this work, the automated choice of the ref-
erence model will use three performance criteria
largely found in the literature: zero steady-state
error for reference tracking, maximum overshoot
and settling time.

In order to achieve the reference tracking cri-
teria, the controller used in the closed loop needs
to contain the integral action if the process does
not have it, which is the case of PI/PID con-
trollers. Besides that, the reference model steady-
state gain has to be equal to 1, i.e.,

M(z)|z=1 = 1. (7)

The second criteria addressed here is the set-
tling time. Considering the settling time to be the
instant of time that the response achieves 98% of
the steady-state value, for a first order continuous
process it is calculated as

ts =
ln(0.02)

ps

≈

−4

ps

(8)

where ps is the (continuous model) process pole,
and for a second order under-damped continuous
process it is calculated as

ts = −

ln(0.02)
√

1− ξ
2

ξωn

≈

4

ξωn

(9)

where ωn is the natural frequency and ξ is the
damping factor of the process (Ogata, 2009). Be-
sides, the relation between discrete and continuous
poles is given by

pz = e
psTs

, (10)

where pz is the discrete pole. So, in order to ob-
tain a response with the desired settling time, the
reference model should have a dominant discrete
pole

pz = e

−4

ts
Ts

or a pair of complex poles where the relation

ξωn = e

4

ts
Ts

is respected.
Finally, there is the overshoot criteria. It is

important to remember that the overshoot criteria
is not a hard constraint, but rather an acceptable
margin for the performance of the closed-loop sys-
tem. If the design acceptable overshoot is greater
than zero, then the reference model should have a
dominant pair of complex poles.

Consider a second-order continuous-time sys-
tem whose characteristic polynomial can be rep-
resented by s

2+2ξωns+ωn
2 and whose roots are

ps1,2 = −ξωn ± ωn

√

1− ξ
2
. (11)

From systems theory (Ogata, 2009), it is
known that the highest value of overshoot (herein

it will be worked with values from 0 to 1 instead
the percentage, without loss of generality) is given
by

M0 = e

−
ξπ√
1−ξ2 (12)

whose damping factor is equivalently given by

ξ =

√

√

√

√

√

√

√

ln2(M0)

π
2

1 +
ln2(M0)

π
2

· (13)

That is, from a design value of maximum over-
shoot, one can determine the damping factor from
(13) and, having the desired settling time, the nat-
ural frequency is obtained from (9). Based on
these values, the continuous poles are given by
(11) and using the relation (10), the discrete poles
of a second order reference model are given by

pz1,2 = e
−ξωnTs±ωnTs

√

1−ξ2

= e
−ξωnTs [cos(ωnTs

√

1− ξ
2)

± sin(ωnTs

√

1− ξ
2)].

(14)

3.3 Reference model constraints

When a Model Reference control method is
used, there are some constraints in the reference
model that need to be considered. Since the con-
troller structure is fixed and has zero relative de-
gree (PI or PID), the reference model should have
at least the same relative degree as the process.
So, if the process presents a significant transport
delay, it is important that the reference model
also contains the process’s transport delay. This
is done trying to avoid high control signals which
would probably saturate or even cause instability
to the control loop.

Also, another undesirable situation is the can-
cellation of unstable poles and zeros. If the process
contains non-minimum phase zeros, then the ref-
erence model must also contain them. Otherwise,
the controller tends to cancel these zeros with un-
stable poles. Even if the controller’s poles are
fixed, the minimization of JMR(ρ) would probably
cause instability to the control loop, as reported
in (Campestrini et al., 2011).

Therefore, if the process model is unknown,
the choice of the reference model requires an a
priori knowledge of the transport delay of the pro-
cess and the exact position of the non-minimum
phase zeros, if they exist.

4 Automated choice of the reference

model

From the section above, it can be seen that
choosing a suitable reference model is not an easy
task: requires some knowledge on the process and
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some experience from the designer. If the designer
chooses a reference model that does not take into
account the process characteristics, model refer-
ence control methods are not safe to be used in in-
dustrial applications. This may happen because,
if the reference model specifies a performance that
is too different from the best that can be achieved,
then the closed loop with the obtained controller
may have nothing to do with the desired response.
Indeed, it can even be unstable.

In order to try to solve this problem, in this
work an algorithm is proposed to automate the
choice of the reference model based on some char-
acteristics of the process that are going to be iden-
tified in a first step, using the same data collected
for the controller design, and on some control cri-
teria that are related to open-loop data.

In (Mårtensson and Hjalmarsson, 2009), the
authors discuss how the location of poles and zeros
of the system influence the quality of the parame-
ters obtained by prediction error identification, as
well as order and structure chosen for the model.
They show that instability and inverse response
(poles and zeros outside the unit circle) top the list
of most easily identifiable characteristics and with
less variance in the estimate, followed by large val-
ues of overshoot and by system’s settling time.

Since there is no interest in finding a complete
model for the system but only in some prevailing
characteristics, the first step of the procedure is
the identification of an AR(MA)X1 model for the
process with G(z, θ) given by

G(z, θ) =
(θ1 + θ2z

−1)z−nk

1 + θ3z
−1 + θ4z

−2

=
K(1− fz

−1)z−nk

(1− pz1z
−1)(1− pz2z

−1)
, (15)

which represents the open-loop behavior of the
process. The idea is to vary nk from 1 to 10
and estimate AR(MA)X models using these differ-
ent values. The model which gives the minimum
value of Ē [y(t)−G(z, θ)u(t)]

2
is the one that will

be used in the procedure. Notice that nk gives
the estimate of the transport delay of the system.
With this model one can also identify the non-
minimum phase zero, if it exists. Also, as there
are two poles to be identified, a complex pair of
poles can be found. If this is not the case, i.e., the
system does not present overshoot, then pz1 , pz2

will be real poles. In this case, it is assumed that
|pz1 | ≥ |pz2 |.

This model will be the source for the process
characteristics that will be used in the reference
model determination, as shown in the next sub-
sections.

Notice that in theory only the issues treated
in Section 3.3 need to be a concern when choos-

1Different structures could be chosen here. The focus
is on ARX or ARMAX in order to further implement this
algorithm in a micro-controller.

ing the reference model, in order to prevent in-
stability. However, since there is the open-loop
settling time and overshoot (if exists) information
(from the identified model), it is proposed to use
them in order to prevent desired responses that
are completely out of reach. To do so, the settling
time criterion will be addressed as a percentage
of speed considering the open-loop settling time.
Also, the maximum overshoot criteria will be com-
pared to the open-loop maximum overshoot, and
the smaller between both will be used.

4.1 Determining reference model’s dominant
pole(s)

4.1.1 Real poles

Suppose one wants to make a closed-loop sys-
tem K% faster than in open loop, with no over-
shoot. Then the closed-loop dominant pole, or so,
the reference model dominant pole with respect to
the identified dominant pole in continuous domain
(ps1) from the experiment should be such that

psMR
=

(

1 +
K%

100

)

ps1 .

In discrete time this relation is established us-
ing (10) as follows

pMR = e
psMRTs

= e
ps1

Ts

(

1+
K

%

100

)

= p

(

1+
K

%

100

)

z1 . (16)

where pz1 is the dominant pole of G(z, θ) (see
(15)). If G(z, θ) presents a pair of complex poles
instead of a dominant real pole, use the poles ab-
solute value as |pz1 | to compute pMR.

Mathematically, the range of K% can be
[−99,∞). Notice that negative values mean
closed-loop responses which are slower than open-
loop. If −100 is chosen, then poles equal to 1
will be set, and the system will present an inte-
gral behavior. On the other hand, in industrial
applications a value of 100% faster than in open
loop is already regarded as an adequate response.

Example: Suppose a process presents an open-
loop response with settling time ts = 10s. Con-
sidering that data are collected from this pro-
cess with sampling time Ts = 0.25s. In contin-
uous time, this process could be modeled with a
dominant pole in ps = −0.3912 which, with the
adopted sampling time, represents a discrete pole
in pz = 0.9068. Hence, for a closed-loop system
20% faster than open loop, one can obtain the ref-
erence model dominant pole as

pMR = 0.90681.2 = 0.8892.
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4.1.2 Pair of complex poles

Suppose now the designer allows the closed-
loop response to present some overshoot. The idea
is to diminish the open-loop overshoot or to main-
tain it, but not to increase its value. So, in order
to obtain a reference model with these characteris-
tics, the open-loop overshoot has to be estimated.

Suppose a process modelG(z, θ) is obtained in
the first step of the procedure, and its characteris-
tic polynomial presents as roots a pair of complex
poles (14). This polynomial can be written as

1 + θ3z
−1 + θ4z

−2 = 1

−2e−ξωnTs
cos(ωnTs

√

1− ξ
2)z−1+e

−2ξωnTs
z
−2

.

(17)

Let

l ,
ln(θ4)

2Ts

= −ξωn (18)

m ,
arccos

(

−θ3
2
√
θ4

)

Ts

= ωn

√

1− ξ
2 (19)

and

k ,
l

m

=
ln(θ4)

2 arccos
(

−θ3
2
√
θ4

) = −

ξ

√

1− ξ
2
· (20)

The similarity between (12) and (20) is evident,
and so the maximum overshoot is determined from

M0 = e
kπ (21)

and the damping factor is given by

ξ =

√

k
2

1 + k
2
· (22)

With these information, it is set as the desired
overshoot M0d

the smaller value between the one
asked from the user and the open loop one, ob-
tained from the identified model. Then, the de-
sired damping factor ξd is computed using (22) if
the system overshoot is smaller, or using (13) if the
smaller is the one asked by the user. Once these
quantities are chosen, there is left the settling time
criteria to be determined. Consider making the
closed loop being K% faster. As shown in (9), the
settling time depends only on the real part of the
complex poles pair. Since the damping factor for
the reference model has already been chosen, there
is left only the desired natural frequency (ωnd

) of
the reference model to be set. So one have:

ωnd
=

(

1 + K%

100

)

ξωn

ξd

· (23)

By using the relation (18) in (23) there is

ωnd
=

−

(

1 + K%

100

)

l

ξd

· (24)

Therefore, one have

l2 = −ξdωnd
and m2 = ωnd

√

1− ξ
2

d

and the closed-loop poles are given by

pMR1,2
= e

l2Ts [cos(Tsm2)± sin(Tsm2)]. (25)

Example: Let the denominator of an identified
process, sampled at Ts = 0.05s, be

1− 1.4685159z−1 + 0.6703200z−2
.

The performance criteria areM0d
= 0.1 andK% =

100. First, the overshoot criteria must be verified.
To do so, (21) is used to obtain M0 = 0.25. Since
the process overshoot is greater than the specifi-
cation, the desired damping factor will be based
on the desired M0d

= 0.1. The desired damping
factor value is ξd = 0.59, obtained from (13). Fi-
nally, using the performance criteria K% and (24),
one get ωnp

= 13.55rad/s. Thus, the poles of the
reference model are computed by (25), resulting
in the denominator

1− 1.1453295z−1 + 0.4495761z−2
.

4.2 Determining the type and characteristics of
the reference model

The automatic choice of the reference model
will be based on three different reference models,
whose parameters are going to be chosen accord-
ing to process characteristics (obtained with the
identified model) and control performance crite-
ria defined by the user. All three models are
parametrized to present a desired response with
zero steady-state error. The reference models are
described below:

• Model 1:

M1(z) =
1− a

1− az
−1

z
−nk

, (26)

which represents a desired response with no
overshoot. This model depends on the pro-
cess’s time delay, taken from the identified
model, and the pole a, which is obtained from
(16), depending on the dominant pole of the
process and the settling time criteria.

• Model 2:

M2(z) =
(1− a)(1− b)

(1− az
−1)(1− bz

−1)
z
−nk (27)

which may represent a desired response with
or without overshoot. This model depends on
the process’ time delay, taken from the iden-
tified model, and two poles, a and b. This
poles are chosen as follows. If M0d

6= 0, then
the process overshoot is identified from (21).
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Using the smaller between these two values, it
computes ξd from (13) and from the settling
time criteria, computes ωnd

using (24) to ob-
tain a pair of complex poles (25). If M0d

= 0,
the algorithm uses (16) using the dominant
pole of the process model (if it is a complex
pair of poles both have same module) to de-
fine the dominant pole of the reference model.
The second pole is chosen to be 4 times faster
than the dominant pole. It is defined thereby
a reference model with a dominant pole.

• Model 3:

M3(z) =

(1−a)(1−b)

(1−c)
(1− cz

−1)

(1− az
−1)(1− bz

−1)
z
−nk (28)

which may represent a desired response with
or without overshoot, and may contain a non-
minimum phase zero. Herein, it will be con-
sidered non-minimum phase zeros only the
positive ones, since the negative ones do not
configure inverse responses, but instead inad-
equate sampling time (Åström et al., 1984).
This model depends on the process’s time
delay, taken from the identified model, two
poles, a and b, which are chosen as in Model

2, and a zero c, which is chosen as follows.
If the zero of the identified process is non-
minimum phase, then c is equal to this zero.
If not, this zero is located in a position be-
tween the two poles of the model.

In order to use the algorithm, the designer
needs to collect a batch of input and output data
from the process, which cannot be purely steady-
state data, but needs to contain at least a step
change in the reference or a step disturbance. Be-
sides, the user needs to define the control crite-
ria speed K% and maximum overshoot M0d

. The
choice between the three different models is then
done automatically following the procedure de-
scribed below.

1. Identify an AR(MA)X model of the process,
where G(z, θ) is given as in (15);

2. Check if the identified zero f is non-minimum
phase:

(a) If yes, use Model 3;

(b) If not, go to the next step;

3. Check if the identified poles are complex
(have imaginary part):

(a) If yes, use Model 2;

(b) If not, go to the next step;

4. Determine whether dominance exists between
real poles:

(a) If not, use Model 3;

(b) If yes, go to the next step;

5. Verify the design specification for maximum
overshoot:

(a) If M0d
6= 0, use Model 2;

(b) If M0d
= 0, use Model 1.

With the reference model chosen, the user is
safe to apply a data-driven control method to tune
the PI or PID controller.

5 Experimental Results

In order to evaluate the proposed algorithm,
data were collected from a pilot plant in order to
re-tune its controller based on given control per-
formance criteria. The proposed algorithm calcu-
lates the reference model. A specific direct data-
driven method called the Controller Identification
method, presented in (Campestrini et al., 2012)
was chosen to tune the controller. This method
is based on writing the process model G(z, θ) in
terms of the controller to be identified C(z, ρ) and
the known reference model M(z). Thus, instead
of identifying the process model, it directly iden-
tifies the controller that makes the closed loop as
close as possible to M(z).

An experiment was conducted in a spherical
tank plant, which is presented in Figure 1. The
plant is highly nonlinear and the level is controlled
to be near the middle of the sphere, in order to
minimize the nonlinear effect.

Figure 1: Pilot plant.

The controlled variable is the level in the up-
per left tank and the manipulated variable is the
current at the inlet tank pump. The current sig-
nal is 4−20mA standard and the tank level range
is from 0 to 26cm (its diameter). As level plants
have a nearly integrator characteristic (Campos
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and Teixeira, 2010), the experiment for data col-
lection was done in closed loop. The sampling
time is Ts = 1s and the initial controller was a PI
whose discrete-time transfer function is given by:

Cini(z) =
4.5− 3.8z−1

1− z
−1

= [3.8 0.7]

[

1
1

1−z−1

]

. (29)

The data collected for the procedure was ob-
tained from the application of a reference signal
which consisted in two steps with 4cm, one from
11cm to 15cm and the other in the opposite direc-
tion. The result of the performed test is shown in
Figure 2.
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Figure 2: Closed-loop experiment in the level tank
plant for the controller identification.

From this test, it is observed that the closed-
loop system with the initial controller presents a
response with a high overshoot. Much of this is
due to the fact that the control signal has been
left for a long period saturated at 20 mA. Based on
this response, a PI controller was designed consid-
ering the following criteria: zero steady state er-
ror, K% = 100 faster than the open-loop response
and M0d

= 0. Notice that since a closed-loop ex-
periment was conducted, there is no knowledge of
the open-loop settling time. However, if the spec-
ification of K% = 100 results in a poor response
(one can simulate the reference model response
before applying the method), the specification can
be redefined to obtain a better response.

From the collected data, the identified model
for the construction of the reference model results
in

G(z) =
0.0016947(1 + 1.387z−1)z−1

(1− 0.9888z−1)(1− 0.587z−1)
(30)

Using (30) and the control criteria defined by
the user (K% = 100 M0d

= 0), the algorithm
chooses the reference model. Since the zero of the
model is not a positive non-minimum phase zero,
it is not included in the reference model. Then,

the algorithm checks that the system is modeled
with two real poles and there is clearly a dominant
one. Also, since M0d

= 0, the algorithm converges
to Model 1 and uses the design K% to calculate
the reference model as

M(z) =
0.022197z−1

1− 0.977803z−1
. (31)

Using this reference model and defining the
controller class C(z, ρ) as a PI controller, the Con-
troller Identification Method results in

Cid(z, ρ) =
2.3711(1− 0.9896z−1)

(1− z
−1)

= [2.3464 0.0247]

[

1
1

1−z−1

]

(32)

which is then applied to the control system. The
same reference signal applied for collecting data
is applied now, with this new controller. The
experiment result, compared with the desired re-
sponse, is shown in Figure 3 and a comparison of
the responses obtained with the controllers (29)
and (32) is shown in Figure 4. The mean square
error between the response of the system and the
response of the reference model is ǫ = 0.0917cm,
while with the initial controller was ǫ = 0.1249cm.
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Figure 3: Comparison of the closed loop response
obtained with the controller (32) and the desired
response.

The closed loop system with the identified
controller also presents overshoot, but signifi-
cantly smaller compared to the one obtained with
the initial controller, as shown in Figure 4. Once
more, there was saturation of the control signal,
but for a while almost 2 times smaller as can be
seen comparing figures 2 and 3. Also, this was
achieved just with better tuning of the controller
and without any extra anti-windup procedure.

On the other hand, even with an undesired
small overshoot and saturation in the control sig-
nal (as shown in Figure 3), the performance cri-
teria K% was attained. Indeed, in practical ap-
plications there is no guarantee that the desired
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Figure 4: Comparison of the closed loop response
obtained with the controllers (29) and (32).

response will be achieved. However, with the con-
trol performance choices being related to process
characteristics, we can expect to obtain a close re-
sponse to the desired one. The difference between
the desired and the achieved response that can be
seen in Figure 3 is mostly due to the non-linearity
in the process gain (a variation of 4 cm in a 13
cm radius sphere), which decays until the level
reaches the middle of the sphere and then starts
to grow again.

6 Conclusions

A procedure that automatically calculates a
discrete-time reference model from continuous-
time performance criteria and from an interme-
diate step used to identify some characteristics of
the process to be controlled were presented. Us-
ing this algorithm, the user needs only to deter-
mine if he/she wants to tune a PI or PID con-
troller and define classical control performance cri-
teria, like settling time and maximum overshoot.
The user has no need to determine the reference
model transfer function, which is determined by
the procedure (order and location of poles and ze-
ros). Also, in order to increase the possibility of
achieving the desired response, the performance
criteria are related to the open-loop response of
the process.

The results obtained applying this procedure
to a real plant are satisfactory, since the speed
criterion is matched and the maximum overshoot
has highly decreased.

The presented method was developed for
tracking step references. As future work, it is con-
sidered to expand the algorithm to cope with other
problems like tracking of sine waves, regulatory
control and MIMO control problems.

Acknowledgments This work was supported by
CNPq - Conselho Nacional de Desenvolvimento Cien-
t́ıfico e Tecnológico, and FAPERGS - Fundação de
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