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Abstract— In this paper we discuss an approach for the

Virtual Reference Feedback Tuning (VRFT) for multivariable

systems with non-minimum phase transmission zeros. We also

present some possible choices for the reference model which

satisfy the internal stability constraint. It is shown that with the

addition of all-pass filters in the cost function one can find the

optimal controller parameters without altering the cost function

minimum and avoiding dealing with an unstable filter – which

are two major limitations of the current multivariable VRFT

approaches. Simulation examples show the applicability of the

proposed formulation.

Index Terms— VRFT, non-minimum phase transmission ze-

ros, multivariable systems, PID control.

I. INTRODUCTION

For Single-Input Single-Output (SISO) systems, the finite

zeros are simply the roots of the system’s transfer function

numerator. If they are outside the unit circle (discrete-time

case) they are called non-minimum phase (NMP) zeros. It is

a well known result in control theory that when the loop

is closed with a feedback controller the open-loop zeros

remain unchanged. Thus, in a Model Reference context, if

the system presents a NMP zero and the loop is closed with

a feedback controller then the reference model must also

have the NMP zero, otherwise internal stability can not be

guaranteed, as the controller will tend to cancel out the NMP

zero [1].

In a data-driven approach for the SISO Model Reference

problem when the system presents a NMP zero, a solution

based on the Virtual Reference Feedback Tuning (VRFT)

method [2] was proposed in [3]. There, a flexible criterion

for the reference model is used, and the resulting algorithm

not only provides a tuned controller, but also identifies and

includes in the reference model the NMP zeros, if any.

When dealing with Multiple-Input Multiple-Output (MIMO)

systems the definition of zeros, or in this case transmission

zeros, and their implications on the closed-loop have to be

generalized. In fact, for MIMO systems the transmission

zeros also have input and output directions associated to

them [4]. These directions have implications on output

performance and allowable reference model choice.

In this paper it will be discussed how to extend the MIMO-

VRFT method [5], [6], [7] to cope with NMP transmission

zeros that have been incorporated into the reference model
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(and thus are known in advance). In this case the MIMO-

VRFT method fails in computing the controller parameters,

because the cost function depends on the inverse of reference

model which then happens to be unstable; this limitation will

be discussed later on.

We present an all-pass factorization for the multivariable

discrete-time case, analogous to the continuous-time case

presented in [4], which considers the system’s transmission

zeros input and output directions. Based on this factorization

and on the structure of the reference model we show that,

with the addition of some filters to the cost function, one

can compute the controller parameters without dealing with

an unstable filter and without altering the cost function

minimum.

The paper is organized as follows: we start by stating the

Model Reference control problem in Section II and also the

constraint involving the NMP transmission zero. In Section

III we review the VRFT approach and propose all-pass filters

to solve the problem of using an unstable filter (the inverse of

reference model). Simulation results are presented in Section

IV and a conclusion is given in Section V.

II. PROBLEM STATEMENT

Consider a linear time-invariant discrete-time MIMO pro-

cess

y(t) = G0(q)u(t) + v(t), (1)

where q is the forward-shift operator, G0(q) is the process

transfer matrix, u(t) is the control input vector and v(t) is

a noise vector. The transfer matrix G0(q) is a square n× n
matrix whose elements are rational transfer functions. We

also assume that every element of G0(q) is strictly proper.

The design task is to tune the parameter vector P ∈ R
p

of a linear time-invariant controller C(q, P ) in order to

achieve a desired closed-loop response. We assume that this

controller belongs to a given user-specified controller class

C such that all elements of C(q, P ) are proper. The control

action u(t) can be written as

u(t) = C(q, P )(r(t)− y(t)), (2)

where r(t) is the reference signal, which is assumed to be

quasi-stationary and uncorrelated with the noise. The system

(1)-(2) in closed-loop becomes

y(t, P ) = T (q, P )r(t) + (I − T (q, P ))v(t), (3)

T (q, P ) = [I +G0(q)C(q, P )]−1G0(q)C(q, P ). (4)

The controller class C is defined as

C = {C(q, P ) : P ∈ Ω ⊆ R
p} ,



where the controller structure to be designed is defined as

C(q, P ) =






C11(q, ρ11) C12(q, ρ12) · · · C1n(q, ρ1n)
...

...
. . .

...

Cn1(q, ρn1) Cn2(q, ρn2) · · · Cnn(q, ρnn)






(5)

and P = [ρT11 ρT12 . . . ρTn1 . . . ρTnn]
T .

In particular, the PID controller class with fixed derivative

pole is such that each element in (5) has the structure

Cij(q, ρij) = ρTij





1
q

q−1
q−1
q



 . (6)

In the Model Reference approach to the design, the closed-

loop performance is specified through the desired closed-loop

transfer matrix Td(q), also known as the reference model.

The controller parameters are then tuned as the solution of

the problem formally stated below.

P̂ = argmin
P

JMR(P ) (7)

JMR(P ) ,

N
∑

t=1

||(Td(q)− T (q, P ))r(t)||22, (8)

where r(t) is the reference signal of interest and N is the

time horizon.

The ideal controller Cd(q) is the one that allows the

closed-loop system to match exactly Td(q) and is given by

Cd(q) = G0(q)
−1Ld(q) (9)

Ld(q) , Td(q)[I − Td(q)]
−1. (10)

When the controller structure C is such that it can represent

exactly the ideal controller Cd(q) for some set of parameters,

we say that the ideal controller belongs to the controller

class.

Assumption 1: Cd(q) ∈ C: There is a parameter vector P0

such that C(q, P0) = Cd(q).

In a Model Reference design, if the system has a NMP

transmission zero then an important constraint needs to be

satisfied in order to obtain an ideal controller without poles

outside the unit circle. In the remaining of this paper, we use

the definitions of transmission zeros and their input uznm
and

output yznm
direction as presented in [4].

Theorem 1 ([4]): If G0(q) is stable and has a non-

minimum phase (NMP) transmission zero at znm with output

direction yznm
, then for internal stability of the feedback

system with the ideal controller, the following interpolation

constraint must apply:

yHznm
Td(znm) = 0. (11)

⋄
In words, (11) says that Td(q) must have the same trans-

mission zeros of G0(q) in the same output direction. It is

important to notice that constraint (11) is a function of the

transmission zeros and has no direct relation with the zeros

of the elements of G0(q).

So if the system has non-minimum phase transmission

zeros the user needs to know their location (just like in the

SISO case [3]) in order to satisfy (11) and their direction may

be necessary depending on the reference model structure, as

will be seen in the next Section. It is out of the scope of this

paper how the user can find these information, but it will

be shown how to treat this particular case when using the

VRFT to tune the controller and constraint (11) have already

been incorporated in the reference model.

III. THE VRFT APPROACH

The VRFT method is a one-shot data based method, that

is, with one batch of input-output data, the method searches

for a controller that makes the closed-loop system as close as

possible to the reference model. The main idea of the method

is to find the minimum of JMR(P ) criterion (8) without the

knowledge of the process model and without using iterative

algorithms. The user defines the reference model Td(q) and

the controller structure, then the controller parameters are

found through a least squares minimization.

A MIMO-VRFT derived directly from the SISO approach

is presented in [7]. In their work the controller parameters

are obtained by the solution of the following optimization

problem:

min
P

JV RF (P )

JV RF (P ) =
N
∑

t=1

‖F (q)[u(t)− C(q, P )ē(t)]‖22,(12)

where u(t) and ē(t) = (Td(q)
−1 − I)y(t) are vectors,

C(q, P ) is the controller matrix and F (q) is a filter that

can be used as an additional degree of freedom by the user.

When the ideal controller Cd(q) belongs to the chosen

controller class, it is the minimum of JV RF (P ), no matter

which filter F (q) is chosen. When this is not the case, the

filter is chosen to approximate the minima of JV RF (P ) and

JMR(P ). The filter is given by [7]

F (eω) =Td(e
ω)(I − Td(e

ω))Φ1/2
r (ω)Φ−1/2

u (ω), (13)

∀ω ∈ [−π, π],

where Φr(ω) and Φu(ω) are the power spectra of the

reference signal r(t) we want to apply to the closed-loop

system and the applied control signal u(t) respectively, and

Φ
1/2
x (ω) denotes a spectral factor of Φx(ω).

If C(q, P ) is linearly parametrized then JV RF (P ) is

quadratic in the parameters and a closed solution to the

optimization problem is given by

P̂ =

(

N
∑

t=1

ϕ(t)ϕT (t)

)−1 N
∑

t=1

ϕ(t)w(t), (14)

where

w(t) = F (q)u(t), ϕ(t) = [A1 A2 · · · An],



Ax =











Fx1Ex(t)
Fx2Ex(t)

...

FxnEx(t)











, Ex(t) =











C̄x1(q)ē1(t)
C̄x2(q)ē2(t)

...

C̄xn(q)ēn(t)











(15)

for x = 1, 2, · · · , n. When data is affected by noise then

instrumental variables (IV) must be used [1].

Inversion of Td(q) in (12) yields an unstable filter when

Td(q) has a NMP transmission zero. The key-idea is then to

add an all-pass filter which reflects this zero inside the unit

circle, so the inversion yields a stable filter without altering

the minimum of (12). We shall discuss the solutions based

on some choices for the reference model. Our choices will

consider that we are aiming to tune a PID controller (6).

Case 1: diagonal reference model

Let us consider first the case where a diagonal reference

model has been chosen, that is

Td(q) =











t11(q) 0 . . . 0
0 t22(q) . . . 0
...

...
. . .

...

0 0 . . . tnn(q)











, (16)

where each element has the form

tii(q) =

(1−p1ii)(1−p2ii)
(1−znm) (q − znm)

(q − p1ii))(q − p2ii)
· (17)

Since it can be seen as a choice of n SISO models, we can

use equal approach to [8] for the choice of the elements. If

no overshoot is allowed, choose p1ii = e−4/ns and choose

p2ii = znm(1−p1ii)
(znm−p1ii)

. If some overshoot is allowed, then

choose complex values for p1,2, with Re{p} = |p|2+znm

2znm
and

|p| = e−4/ns . Here, ns is the desired number of samples in

the settling time. The choices proposed for the second pole

of the reference model elements yield the poles of a PID (6)

if computing the ideal controller (see (9)–(10)).

Notice that the NMP transmission zero is present in

each element of (16). Thus, for a diagonal structure of the

reference model one does not need to be concerned with the

zero output direction, since constraint (11) will be satisfied

because Td(znm) = 0.

To apply the VRFT method, we need to add a filter La(q)
to (12) that both reflects the zero inside the unit circle and

does not change the minimum of (12). In order to cope with

the second necessity, we define

J1(q, P )V RF
NMP =

N
∑

t=1

||F (q)La(q)[u(t)

− C(q, P )(T−1
d (q)− I)y(t)]||22. (18)

Also, in order to commute the filter La(q) with C(q, P )
so we can multiply it with T−1

d (q), then La(q) must be a

scalar function multiplying the identity matrix and it must

cope with the first necessity.

Since every element tii(q) of Td(q) has the plant’s NMP

transmission zeros, we must reflect every zero inside the unit

circle, which can be properly achieved with a scalar function

times the identity matrix. The scalar function is a well-known

Blaschke function given by

f(q) =
|znm|
znm

znm − q

1− z∗nmq
,

where z∗nm is the complex conjugate of znm, and a gener-

alized filter that considers every NMP transmission zero in

the system is given by

La(q) = I

Nz
∏

i=1

|znmi
|

znmi

znmi
− q

1− z∗nmi
q
, (19)

where Nz is the number of different NMP transmission zeros.

Let

T d(q) , Td(q)La(q)
−1. (20)

Then

J1(q, P )V RF
NMP =

N
∑

t=1

||F (q)[La(q)u(t)

− C(q, P )(T
−1

d (q)− La(q))y(t)]||22. (21)

Notice that in (21), the VRFT filter F (q) can still be used

to approximate the minima of (8) and (21) when Assumption

1 is violated.

A. Case 2: non-diagonal reference model

Consider now the case where the reference model is

not diagonal but it satisfies (11). In this case, the NMP

transmission zero of the reference model will have an output

direction equal to the process (11), but its input direction will

be different of the process zero input direction. Albeit, since

the reference model is a known transfer matrix (unlike the

process model) the input-output direction can be computed

via a SVD procedure [4].

One special case is when the reference model has a block-

triangular structure. This structure allows a design where

we can move the effect of the NMP transmission zero to a

specific output. Let k be the this output. Thus, the reference

model can be defined as

Td(q) =





















Td11 (q) 0 0 0 . . . 0
0 Td22 (q) 0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

. . . .
.
.
.

Tdk1
(q) Tdk2

(q) . . . Tdkk
(q) . . . Tdkn

(q)

0 0 0 0
. . . 0

0 0 0 0 . . . Tdnn
(q)





















. (22)

The elements Tdjj
(q), j 6= k, can be chosen according

to the desired performance using models of first or second-

order. The element Tdkk
(q) must have the NMP transmission

zeros and its poles are chosen according to performance

criteria. The other elements of row k should be chosen so

that the ideal controller matches the PID class, or at least is



closer to it. Using (22), the filter (10) is given by

Ld(q) =

























Td11
(q)

1−Td11
(q) 0 0 0 . . . 0

0
Td22

(q)

1−Td22
(q) 0 0 . . . 0

...
...

. . .
... . . . 0

Tdk1(q)

den(Ldjk
(q))

Tdk2
(q)

den(Ldjk
(q)) . . .

Tdkk
(q)

1−Tdkk
(q) . . .

Tdkn
(q)

den(Ldjk
(q))

0 0 0 0
. . . 0

0 0 0 0 . . .
Tdnn (q)

1−Tdnn (q)

























where den(Ldjk
(q)) = (1 − Tdjj

(q))(1 − Tdkk
(q))), j =

1, . . . , n and j 6= k.

Since Cd(q) = G−1
0 (q)Ld(q), the elements of Ld(q)

should at least contain the poles of the PID controller. To

simplify, assume Tdkk
(q) as a second-order model with the

NMP zero and Tdjj
(q) as a first-order model, both without

delays. Then

Ldjj
(q) =

1− p1jj
q − 1

, (23)

Ldkj
(q) =

Tdkj
(q)

(q−1)
(q−p1jj)

(q−1)
(

q−
znm(1−p1kk−p2kk)+p1kkp2kk

1−znm

)

(q−p1kk)(q−p2kk)

·

(24)

Notice that a proper choice on Tdkj
(q) and Tdkk

(q)
will make (24) present the poles of a PID controller.

More specifically, Tdkj
(q) should have the poles of both

Tdjj
(q) and Tdkk

(q), a zero at one and also the expression
znm(1−p1kk−p2kk)+p1kkp2kk

1−znm
should be zero, which is obtained

as proposed in the diagonal reference model.

Consider the following choice for Tdkj
(q):

Tdkj
(q) = Kj

(q − 1)(q − zkj)

(q − p1jj)(q − p1kk)(q − p2kk)
(25)

= Kj(q − zkj)T dkj
(q),

where variables Kj and zkj are (dependents) degrees of

freedom that can be used to satisfy yHznm
Td(znm) = 0.

This can be achieved as follows: choose a value for Kj (we

recommend a value near the ratio between directions |yj/yk|
); compute zkj using

zkj = znm +
yjTdjj

(znm)

ykKjT dkj
(znm)

· (26)

There is a compromise between choices of Kj and zkj
and the maximum value expected in the output of Tdkj

(q).
Moreover, it is easier to move the effect of the NMP zero to

the output where directionality is greater. If k is this output,

then one can expect a lower interaction. Also, it is expected

that with the recommended choice for Kj , expression (26)

would result in a zero zkj inside the unit circle, so the output

is less deteriorated. Furthermore, since T dkj
(q) has the poles

of both Tdjj
(q) and Tdkk

(q), if every loop j is “faster” or

have the same speed as loop k, then one can also expect

lower interaction.

If we consider time-delay, then a similar approach can

be applied, and again the user must be aware that the ideal

controller will not be in the PID controller class.

As for the VRFT criterion we would like to add a filter

to the left of (21), in order to keep the minimum unchanged

and to maintain the order of operators and signals. Since

the criterion involves the inverse of a minimum phase factor

of Td(q) (i.e. T
−1

d (q)), the input factorization LI(q) [9] of

the reference model is a suitable choice. We will present the

filter next.

Nevertheless, this filter is not diagonal so it can not be

commuted in (21). Thus, we use the filter La(q) along with

the input-factor filter LI(q). The criterion to be minimized

is defined by

J2(q, P )V RF
NMP =

N
∑

t=1

||F (q)LI(q)[La(q)u(t)

− C(q, P )(T
−1

d (q)− La(q))y(t)]||22, (27)

where La(q) is given by (19) and LI(q) is given by:

LI(q) =
∏Nz

i=1(I +
(|znmi

|−1)(|znmi
|q+|znmi

|)

znmi
−|znmi

|2q ūznmi
ūH
znmi

), (28)

where ūznmi
is calculated according to [9], albeit a discrete-

time formulation has been used to fit the scope of this paper.

We pinpoint that

Td(q) = Tmi
d (q)LI(q),

where Tmi
d (q) is minimum phase with NMP transmission

zeros of Td(q) reflected inside the unit circle and LI(q) is

an all-pass filter.

IV. SIMULATION RESULTS

Consider the system given by

G0(q) =





q

(q−0.9)(q−0.8)
0.6

(q−0.9)
1

(q−0.9)
0.2

(q−0.9)



 (29)

which has a NMP transmission zero at znm = 1.2 with out-

put direction yznm
= [−

√
10/10 3

√
10/10]T . We simulated

the above model applying a PRBS of amplitude 1 (1260
samples) to its inputs and adding filtered white Gaussian

noise v(t) = H(q)e(t) to its outputs, with

H(q) =





q2

(q−0.9)(q−0.8)
q

(q−0.9)
q

(q−0.9)
q

(q−0.9)



 ,

such that the SNR for each output with respect to v(t)
is around 20. Since the system is affected by noise, two

experiments were conducted in order to use instrumental

variables. Using the two sets of data we identified the

following model

G0(q, θ̂) =





1.0582(q−0.04006)
(q−0.9024)(q−0.7944)

0.54377(q−0.8065)
(q−0.9024)(q−0.7944)

1.0127
(q−0.8999)

0.18349
(q−0.8999)



 . (30)

We used the identified model to estimate the NMP trans-

mission zero: ẑnm = 1.224 and its output direction ŷznm
=

[−0.325769 0.945449]T . Given this information, two sets

of designs will be discussed: first, we choose a diagonal

structure for the reference model and then we compare the

results when we use the estimated transmission zero and the



actual transmission zero; next we use the same comparison

but considering the situation where the effect of the NMP

transmission zero is moved to output 2.

As performance criteria we would like the first loop to

be at least 150% faster than the open-loop response and the

second loop at least 100% faster. So we choose a dominant

pole at q = 0.75 for loop 1 and one at q = 0.8 for loop 2.

Also, the controller structure is a full PID matrix in every

case.

In the first reference model the second pole of each

element will be given by p2 = ẑnm(1−p1)
(ẑnm−p1)

·, that is, we

are aiming for a matched case between the ideal and the

identified controller, although using an estimation for the

transmission zero. The reference model is given by

Td1 (q) =





−0.39559(q−1.224)
(q−0.75)(q−0.6456)

0

0
−0.37738(q−1.224)
(q−0.8)(q−0.5774)



 , (31)

and the filter La(q) is given by La(q) =
q−1.224
1−1.224q .

Using the same batch of data used to estimate the process

model, we identify a full PID controller with the modified

VRFT method (21) using IV, resulting in

C1(q, P̂ ) =
[

0.22031(q−0.8941)(q−0.8424)
q(q−1)

−0.59322(q−0.9304)(q−0.7954)
q(q−1)

−1.0705(q−0.9055)(q−0.8014)
q(q−1)

1.0074(q−0.9062)(q+0.01245)
q(q−1)

]

· (32)

The reference model considering the system’s actual trans-

mission zero is given by

Td2 (q) =





−0.41666(q−1.2)
(q−0.75)(q−0.6666)

0

0
−0.4(q−1.2)

(q−0.8)(q−0.6)



 (33)

to which the ideal controller is given by

Cd1 (q) =





0.20833(q−0.9)(q−0.8)
q(q−1)

−0.6(q−0.9)(q−0.8)
q(q−1)

−1.0417(q−0.9)(q−0.8)
q(q−1)

(q−0.9)
(q−1)



 . (34)

The filter La(q) for this case is given by La(q) =
q−1.2
1−1.2q

and using the same batch of data as before the identified

controller with the VRFT method is

C2(q, P̂ ) =
[

0.21431(q−0.8818)(q−0.8503)
q(q−1)

−0.61327(q−0.9161)(q−0.8141)
q(q−1)

−1.0354(q−0.8999)(q−0.8015)
q(q−1)

0.97545(q−0.9008)(q+0.01769)
q(q−1)

]

· (35)

The closed-loop response with controller (32) is shown

in Fig. 1 and with controller (35) in Fig. 2. Simulations

considered a filtered white Gaussian noise on the system

outputs such that the SNR approaches the one in open-loop.

It is noticeable that both responses are very similar and

present a high coupling in loop 1, even using the actual

zero location in the reference model, which would allow the

desired response (33) to be achieved. This happens because

data is affected by noise and, although instrumental variables

have been used, some variance error is still present.

Following the steps given in Subsection III-A and the

information obtained with the identified process model, we

designed a reference model intending to move the effect of
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Fig. 1. Closed-loop response of (29) with controller (32).
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Fig. 2. Closed-loop response of (29) with controller (35).

the NMP transmission zero to output 2 while keeping time

criteria for each output. The reference model is

Td3 (q) =





0.25
(q−0.75)

0

0.34457(q−1)(q−0.918)
(q−0.8)(q−0.75)(q−0.5774)

−0.37738(q−1.224)
(q−0.8)(q−0.5774)



 . (36)

The input zero direction of the reference model is ūznm
=

[0 1]T , so the input filter is described by

LI(q) =

[

1 0

0
−0.81701(q−1.1224)

(q−0.81701)

]

· (37)

Using the same batch of data as before, the identified

controller is given by

C3(q, P̂ ) =
[

0.51085(q2−1.737q+0.7551)
q(q−1)

−0.86315(q2−1.733q+0.7506)
q(q−1)

−0.31616(q−0.8997)(q−0.1868)
q(q−1)

1.1981(q−0.8993)(q−0.1603)
q(q−1)

]

· (38)

Now, performing the same design but using the actual

values of the NMP transmission zero location and output

direction, the reference model is

Td4 (q) =





0.25
(q−0.75)

0

0.3333(q−1)(q−0.9)
(q−0.8)(q−0.75)(q−0.6)

−0.4(q−1.2)
(q−0.8)(q−0.6)



 , (39)



to which the ideal controller is given by

Cd2(q) =





0.375(q−0.9)(q−0.8)
q(q−1)

−0.6(q−0.9)(q−0.8)
q(q−1)

−0.20833(q−0.9)
(q−1)

(q−0.9)
(q−1)



 . (40)

The input filter for this case is

LI(q) =

[

1 0

0
−0.8333(q−1.2)

(q−0.8333)

]

· (41)

The identified controller was

C4(q, P̂ ) =
[

0.4247(q2−1.731q+0.7491)
q(q−1)

−0.72089(q2−1.734q+0.7516)
q(q−1)

−0.21473(q−0.8974)(q−0.04837)
q(q−1)

1.0515(q−0.897)(q−0.06694)
q(q−1)

]

· (42)

The closed-loop response with controller (38) is shown

in Fig. 3 and with controller (42) in Fig. 4. Simulations

considered a filtered white Gaussian noise on the system

outputs such that the SNR approaches the one in open-loop.
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Fig. 3. Closed-loop response of (29) with controller (38).
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Fig. 4. Closed-loop response of (29) with controller (42).

For this case the difference between obtained responses is

considerable. We see that estimation of the output direction

plays an important role in the reference model choice which

in turn affects the result obtained with the VRFT.

The estimated cost function (8) divided by the number

of samples N considering controllers C1(q, P̂ ), C2(q, P̂ ),
C3(q, P̂ ) and C4(q, P̂ ) are given respectively by: 0.2032,

0.1792, 0.1207 and 0.0682. It is noticeable that for a diagonal

reference model choice the NMP transmission zero location

can be estimated with a certain error margin and the obtained

output with the identified controller is similar to the one

when using the actual NMP transmission zero. We highlight,

however, that the difference in the cost function values tends

to be higher the less affected by noise the data is, causing

the estimation using the VRFT to be better.

When going for a choice where the NMP transmission zero

has a direction in the reference model though, estimation of

the zero output direction is crucial for a better performance,

whether data is affected by noise or not.

V. CONCLUSIONS

In this work we set out to provide a solution for the

MIMO-VRFT when the system presents a NMP transmission

zero. We showed that with the addition of two all-pass filters

to the cost function one can avoid the problem of using an

unstable filter (the inverse of reference model) and still find

the optimal controller parameters.

Simulation results showed the applicability of the pro-

posed formulation and stability was preserved, although the

ideal controller could not always be found. We believe that

because of the all-pass filters added to the cost function, a

better formulation for the VRFT-filter F (q) needs to be made

for this particular case.

We point out that this work requires the knowledge

of the NMP transmission zeros (and possibly their output

direction). We aim next a MIMO approach using a flexible

reference model similar to [3].
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