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Abstract—When applying model reference control to a non-
minimum phase (NMP) plant, it is important to include the
NMP (transmission) zero(s) in the reference model, otherwise
the controller will tend to cancel out these zeros, often causing
loss of internal stability. In data-driven (DD) control it is not
possible to conceive a priori a reference model with the NMP
zero(s) because no model of the plant is available; accordingly,
DD design methods tend to fail in NMP plants. For SISO (single-
input-single-output) plants, this problem has been solved in [1]
by using a flexible reference model in a DD design. This paper
presents an extension of that method for MIMO (multi-input-
multi-output) plants.

Index Terms—Sampled-data control, Identification for control,
Numerical algorithms, Process Control.

I. INTRODUCTION

DATA-DRIVEN (DD) control design methods provide

solutions to classical control problems directly from data

obtained from the system, contrasting with the more traditional

model-based solutions. Most of the DD methods are based on

the Model Reference approach to control design [2]. Virtual

Reference Feedback Tuning [3] is one such method which

by now has become a well-established tool for the design of

reference tracking controllers.

A known limitation of the Model Reference approach, and

thus of all the many design methodologies derived from it,

lies in the control of non-minimum phase (NMP) plants.

NMP behavior appears in a wide range of applications, from

chemical processes to power systems and converters (see

[4]), and is known to be responsible for critical performance

limitations. Model Reference methods are likely to fail in these

cases because the controller will tend to cancel out the plant’s

NMP zero(s), often leading to an unstable closed-loop, even

when this nasty cancellation is not possible within the class of

controllers considered in the design. Including the NMP zeros

in the reference model is a solution that is well documented in

the literature of direct adaptive control (see [5]), but requires

knowing in advance the NMP zeros.

In [1] we have developed a DD method, based on VRFT,

to deal with this issue in SISO plants. The method in [1]

consists in setting a parametrized numerator for the reference

model, which is to be estimated along with the controller

parameters in an iterative optimization procedure. By doing

so, the NMP zeros are identified without deriving a process
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model. A practical application of this method was presented

in [6].

In this paper we develop a MIMO version of that method.

The plant’s transmission zeros are estimated along with

optimal controller parameters, by means of a parametrized

decoupled reference model; this is the first step of a two-

step procedure. Once the NMP transmission zero(s) is(are)

identified, a second step can be performed where the reference

model is then fixed and VRFT is applied only to estimate new

controller parameters that will provide enhanced performance.

II. PRELIMINARIES

Consider a linear time-invariant discrete-time MIMO pro-

cess

y(t) = G0(q)u(t) + v(t), (1)

where q is the forward-shift operator, u(t) and y(t) are n-

vectors representing the process’ input and output, respec-

tively, and the n-vector v(t) is a stochastic process represent-

ing the noise. The transfer matrix G0(q) is a square n × n

matrix whose elements are proper rational transfer functions.

The design task is to tune the parameter vector P ∈ R
p of

a linear time-invariant controller C(q, P ) in order to achieve

a desired closed-loop response. This controller belongs to a

given controller class C such that all elements of the loop

transfer matrix L(q) = G0(q)C(q, P ) have positive relative

degree for all C(q, P ) ∈ C. The control action u(t) can be

written as

u(t) = C(q, P )(r(t)− y(t)), (2)

where r(t) is the reference signal, which is assumed to be

quasi-stationary and uncorrelated with the noise v(t) [7]. The

system (1)–(2) in closed-loop becomes

y(t, P ) = T (q, P )r(t) + (I − T (q, P ))v(t), (3)

T (q, P ) = [I +G0(q)C(q, P )]−1G0(q)C(q, P ). (4)

In the Model Reference approach, closed-loop performance

is specified through the desired closed-loop transfer matrix

Td(q), also known as reference model. The controller param-

eters are then tuned as the solution of the problem formally

stated below.

P̂ = argmin
P

JMR(P ) (5)

JMR(P ) ,

N∑

t=1

||(Td(q)− T (q, P ))r(t)||22, (6)

where r(t) is the reference signal of interest and N is the time

horizon.



The ideal controller Cd(q) is the one that allows the closed-

loop system behavior to match exactly the one prescribed by

Td(q) and is given by

Cd(q) = G0(q)
−1Td(q)[I − Td(q)]

−1. (7)

If the ideal controller Cd(q) were put in the control loop, the

objective function JMR(P ) would evaluate to zero, providing

the ideal input-output performance. However, it is clear from

(7) that the plant’s zeros turn into poles of the ideal controller,

which will result in internal instability for plants that possess

NMP zeros. To avoid this destabilizing pole-zero cancellation,

one should prescribe that the NMP zeros appearing in the

denominator (7) are canceled by a proper choice of the

reference model, as specified in the following Theorem.

Theorem 1 ([8]): If G0(q) has a non-minimum phase (NMP)

transmission zero at znm with output direction yznm
, then

for internal stability of the feedback system with the ideal

controller, the following constraint must apply:

yHznm
Td(znm) = 0. (8)

⋄
It is clear – but still worth a remark – that constraint (8) is

a function of the transmission zeros and has no direct relation

with the zeros of the elements of G0(q). Theorem 1 states that

in order to obtain internal stability, the reference model Td(q)
must have the same NMP transmission zeros of G0(q) in the

same output directions. So if the system has non-minimum

phase transmission zeros the user needs to know at least their

location (just like in the SISO case [1], [2]) in order to choose

a reference model satisfying (8). As for the transmission zeros

directions, there are two possibilities [9]. One is to choose the

reference model such that the NMP transmission zero has the

same direction as in the plant’s transfer function; this of course

requires knowledge of its direction in addition to knowledge of

its value. Another choice is to put the NMP transmission zero

in n linearly independent directions in the reference model,

which is obtained putting it as a zero of each one of the

elements in a diagonal Td(q), for instance. This second choice

does not require knowledge of the NMP transmission zero’s

direction, but spreads its effect on the performance throughout

all the outputs, and is the solution taken in this paper.

Data-driven control methods address the minimization of

the criterion (6) directly from data collected from the system,

without a priori knowledge of a process model and without

deriving such a model from these data [10], [11], [12], [13],

[14]. Since no process model is known, one can not assume

prior knowledge of the NMP transmission zeros’ locations,

let alone their directions. As a consequence, direct application

of such data-driven methods to NMP plants, whether SISO or

MIMO, tends to fail because the reference model will lack the

inclusion of the unknown NMP zeros. We have presented a

solution to this problem in the SISO case, which represents an

extension of the SISO-VRFT method [1]. In the present paper

we extend this solution to the MIMO case by incorporating

those ideas into the MIMO-VRFT.

The situation is similar to the SISO case, but presents

additional challenges; let us briefly discuss some of them.

In an SISO plant, the existence of an NMP zero is usually

easy to detect from the plant’s step response, since the NMP

characteristic causes an inverse response in the first moments

after the step.1 This is not the case for NMP-MIMO plants,

unless the input is applied in the NMP transmission zero’s

direction – a rare occurrence. Moreover, a step input in the

MIMO case may produce an inverse response in a system that

has no NMP transmission zeros. Another difficulty peculiar

to the MIMO case is the one expressed in Theorem 1 and

discussed in the paragraph following it: the reference model

must consider not only the location of the NMP transmission

zero in the complex plane, but also its direction. Conceiving

an appropriate reference model Td(q) is also more involved

in the MIMO case, an issue that we have studied in previous

papers whose solutions we have applied to the examples in

this paper [9]. Finally, a MIMO controller is bound to have

a much larger number of parameters than an SISO controller,

which raises numerical issues.

Let us first present the MIMO-VRFT problem and its usual

solutions. The MIMO-VRFT approach was presented in [13].

A more general MIMO approach derived directly from SISO-

VRFT has been presented in [14], in which the controller

parameters are obtained by minimizing the following cost

function:

JV R(P ) =
N∑

t=1

‖F (q)[u(t)− C(q, P )(T−1
d (q)− I)y(t)]‖22,

(9)

where F (q) is a filter used to approximate the minima of

(6) and (9) and the remaining variables have been previously

defined. The filter used in this paper is:

F (q) = Td(q)(I − Td(q)). (10)

If C(q, P ) is linearly parametrized, i.e., each element can be

described as cij(q) = ρTijβij(q) (which is the case of standard

PID controllers), then JV R(P ) is quadratic in the parameters

and a closed-form solution to the optimization problem is

obtained via least-squares [14]:

P̂ =

(
N∑

t=1

φ(t)φT (t)

)−1 N∑

t=1

φ(t)uF (t), (11)

where

uF (t) = F (q)u(t), φ(t) = [A1 A2 · · · An],

Ax =




Fx1(q)Ex(t)
Fx2(q)Ex(t)

...

Fxn(q)Ex(t)


 , Ex(t) =




βx1(q)ē1(t)
βx2(q)ē2(t)

...

βxn(q)ēn(t)




(12)

for x = 1, 2, . . . , n, where ē(t) = (T−1
d (q) − I)y(t) is the

virtual error, ēi(t) is the i− th component of ē(t) and Fij(q)
is the (i, j) element of the filter F (q).

In the more practical situation in which the signals are noisy,

the solution of the least-squares problem is biased and an

1This is true for plants with natural NMP behavior, but not necessarily
when an NMP zero appears in G(q) as a result of sampling phenomena.



instrumental variable technique should be used to eliminate

the bias [2], [14].

As in any model reference design, MIMO-VRFT often

results in an internally unstable closed-loop when the process

is NMP and the reference model does not include the NMP

transmission zeros. This instability tends to happen even when

the controller class has fixed poles, for although the unstable

pole-zero cancellation is not possible in this case, the design

will still try (and to some extent succeed) to mimic the dreadful

behavior of the ideal controller Cd(q). Also, instability is more

usual with NMP zeros that come from actual NMP behavior

in continuous-time (which have positive real part) than with

those which arise as a discretization phenomenon (which have

negative real part).

An approach using VRFT, but which consider a previous

step of process identification and inclusion of NMP trans-

mission zeros in the reference model has been detailed in

[9]. However, DD designs are most advantageous precisely

because they do not require the identification of a model. An

alternative solution is presented in this paper: the extension

for the MIMO case of the method presented in [1], in which

the use of a flexible reference model provides the NMP

transmission zeros together with the controller parameters,

without obtaining a full model for the plant.

III. THE FLEXIBLE PERFORMANCE CRITERION

The core idea of the proposed method is to use a two-step

procedure, whose first step is solved using a parametrized

transfer matrix reference model. The parametrization to be

chosen will be the one most appropriated to the design method

to be applied. In order to be able to apply a VRFT scheme

similar to [1], the flexible reference model is chosen as

Td(q) = Td(q, η) = ηTϑ(q)I, (13)

where η ∈ R
q is a vector of free parameters of the numerator

of each element in Td(q, η) and ϑ(q) is a q-vector of proper

rational functions.

In so doing, we are not specifying the whole transfer

function; instead, degrees of freedom are left in its specifi-

cation which can accommodate the inclusion of the necessary

transmission zeros in the reference model. Notice that (13)

implies that the same closed-loop behavior is specified for ev-

ery input-output pair, which may be a restrictive performance

choice. However, part of this drawback can be solved in the

second step, which will be described later and explored in the

examples. By choosing the reference model as in (13), we

guarantee to satisfy (8) even without the information of the

NMP transmission zeros directions. Moreover, this formulation

keeps the attractive feature of VRFT that the estimates – in

this case, both η̂ and P̂ – are simply obtained via least-squares.

The optimization of the flexible criterion is now made with

respect to the controller parameters as well as the η parameters,

which will provide the appropriate zeros in the reference

model. We then have the following Assumption associated

with the DD nature of the problem:

Assumption 1: There exists a pair (η∗, P ∗) such that

C(q, P ∗) = G−1
0 (q)Td(q, η

∗)[I − Td(q, η
∗)]−1. (14)

Under Assumption 1 and using (13), we have

(η∗, P ∗) = argmin
η,P

(η,P ) 6={0, 0}

J̃V R(η, P ) (15)

J̃V R(η, P ) =

N∑

t=1

||F̄ (q)Td(q, η)u(t)− F̄ (q)C(q, P )

×(I − Td(q, η))y(t)||
2
2,

(16)

F̄ (q) = (I − Td(q, η̂)). (17)

The criterion J̃V R(η, P ) in (16) is obtained by approximating

the filter (10) as F (q) = Td(q, η)F̄ (q) and when the reference

model is given as in (13), Td(q, η) commutes with all matrices

and can be estimated in the procedure that will be described

in the following. Given the linear parametrization of both the

controller and the reference model, J̃V R(0, 0) = 0, which is

avoided by the constraint imposed in (15).

Since the argument in (16) is bilinear in η and P , the

minimization of J̃V R(η, P ) can be treated as a sequence of

least squares problems [7]:

η̂(i) = argmin
η

J̃V R(η, P̂ (i−1)) (18)

P̂ (i) = argmin
P

J̃V R(η̂(i), P ), (19)

where we assume knowledge of one quantity (η or P ) to obtain

the other and the use of a known filter F̄ (q). Each minimiza-

tion has a least-squares solution. Assume that C(q, P̂ ) is a

known transfer matrix and insert (13) in (16). This gives

J̃V R(η, P̂ ) =

N∑

t=1

||ηTϑ(q)[F̄ (q)u(t) + F̄ (q)C(q, P̂ )y(t)]

− F̄ (q)C(q, P̂ )y(t)||22

=
N∑

t=1

||ηTϑ(q)F̄ (q)[u(t) + C(q, P̂ )y(t)]

− F̄ (q)C(q, P̂ )y(t)||22.

(20)

where F̄ (q) can be obtained using the estimate of η obtained

in the previous iteration, that is η̂(i−1). Least-squares solution

of (20) with respect to η is given by

η̂ =

[
N∑

t=1

(ϑ(q)w(t))T (ϑ(q)w(t))

]−1 [ N∑

t=1

(ϑ(q)w(t))T ũ(t)

]

(21)

where w(t) = F̄ (q)[u(t) + C(q, P̂ )y(t)] and ũ(t) =
F̄ (q)C(q, P̂ )y(t).

Now, assume that T (q, η̂) is a known transfer matrix. Then

(16) can be rewritten as

J̃V R(η̂, P ) =
N∑

t=1

||T (q, η̂)F̄ (q)u(t)− F̄ (q)C(q, P )

× (I − T (q, η̂))y(t)||22. (22)

Least-squares solution to (22) is the same as (11) but with

uF (t) = T (q, η̂)F̄ (q)u(t) and ē(t) = (I − T (q, η̂))y(t).



As in [1], since the procedure is iterative, initial values

for C(q, P (0)) and/or Td(q, η
(0)) must be given. If data are

collected in closed-loop then the first step of the sequential

least squares is to identify the reference model. Remind

that filter F̄ (q) is a function of an estimate of η, which is

unknown. In this case, we suggest to start the algorithm by

using F̄ (q) = I to obtain η(1) and then update the filter

at each step using the obtained estimates of η. Finally it is

important to highlight that, just as in the SISO case, even

though the minimization algorithm is iterative, the data from

the system are collected just once, thereby keeping the “one-

shot” property of the VRFT method.

As mentioned before, minimization of J̃V R(η, P ) corre-

sponds to a diagonal reference model that contains the NMP

transmission zeros of the plant, if any. We propose then a

two-step procedure.

Step 1: Minimize J̃V R(η, P ); call (η̂, P̂ ) the minimizing

parameters and check the step response of Td(q, η̂).
If it is satisfactory, apply C(q, P̂ ) to the system. If not,

go to Step 2.

Step 2: If the obtained Td(q, η̂) has NMP transmission ze-

ros, then keep these zeros and change the reference

model poles according to a desired response; if not,

change poles and zeros accordingly. Apply the standard

MIMO-VRFT.

Notice that while Step 1 is used to identify the NMP

transmission zeros, Step 2 is used to eliminate the drawback

of having the same desired response for every loop. However,

we cannot eliminate the NMP effect from every output since

we do not know its direction.

IV. ILLUSTRATIVE EXAMPLES

In this section we present simulation studies using the

flexible VRFT scheme with the two-step procedure, for two

different processes: one with an NMP transmission zero,

and other with a minimum phase transmission zero. Besides,

we also present an example where the collected signals are

corrupted with noise.

A. Process with one NMP transmission zero

Consider a process described by

G1(q) =




(q−0.7)
(q−0.9)(q−0.8)

2
(q−0.8)

1.25
(q−0.8)

1.5
(q−0.8)


 , (23)

which has an NMP transmission zero at q = 1.2 with

yznm
= [−0.6 0.8]T . The plant’s open-loop response to a

sequence of steps shows no signs of initial inverse/oscillatory

response and prior to any knowledge about the system’s model,

one might be tricked to choose a reference model without

considering the NMP transmission zero, like the following

desired reference model: T̃d(q) = 0.2
(q−0.8)I. Applying the

standard VRFT criterion to tune a PID controller yields

C(q,P̂ )=









0.234(q+0.20)(q−0.91)
q(q−1)

−0.191(q+0.27)(q−0.86)
q(q−1)

−0.195(q+0.20)(q−0.91)
q(q−1)

0.293(q+0.15)(q−0.84)
q(q−1)









,

which causes the closed-loop to be unstable, as the correspond-

ing closed-loop transfer matrix will have poles at q = 1.0105.

The design failed completely due to the absence of the NMP

zero in the reference model. Before moving on, it is worth

noting that this has occurred (as it typically does) despite the

fact that the controller poles are fixed and thus cancellation

of the NMP zero of the plant is not possible - see [1] for a

discussion of this issue in the SISO case.

In order to cope properly with the NMP zero, we apply

the proposed two-step procedure. Data is collected in closed-

loop with an initial stabilizing proportional controller given by

C(q, ρ(0)) = 0.5I, with a sequence of steps as the reference

signal. We study two situations: first the realistic situation in

which Assumption 1 is violated, then the theoretical situation

in which it is satisfied.

1) Assumption 1 is not satisfied: Consider the following

flexible reference model

Td(q, η) = [η1 η2]︸ ︷︷ ︸
ηT

[
q

(q−0.8)2
1

(q−0.8)2

]T

︸ ︷︷ ︸
ϑT (q)

I, (24)

for which Assumption 1 is not satisfied, which is the most

common situation when the process model is unknown. Mini-

mizing (16) using the iterative procedure (18)–(19) yields the

following results at iteration 30:

Td(q, η̂
(30)) =

−0.1884(q − 1.212)

(q − 0.8)2
I,

C(q,P̂ (30))=









0.406(q−0.71)(q−0.92)
q(q−1)

−0.517(q−0.69)(q−0.92)
q(q−1)

−0.317(q−0.69)(q−0.92)
q(q−1)

0.280(q−0.64)(q−0.79)
q(q−1)









·

(25)

As indicated in [9], once the NMP transmission zero has

been identified then a proper choice of the second pole

based on the NMP transmission zero can be done. A suitable

reference model choice in this case would be Td(q) =
−0.388(q−1.212)
(q−0.588)(q−0.8)I, which yields the controller

C(q,P̂ )=









0.609(q−0.81)(q−0.9)
q(q−1)

−0.804(q−0.80)(q−0.90)
q(q−1)

−0.507(q−0.81)(q−0.9)
q(q−1)

0.411(q−0.72)(q−0.79)
q(q−1)









·

(26)

Fig. 1 shows a comparison between the response obtained

with controllers (25) and (26) and their respective reference

models. Some coupling between loops appears in the actual

response for controller (25), specially from input 2 to output

1, whereas coupling has been much reduced with controller

(26). For the first case the performance measure is evaluated

as JMR(P̂ ) = 5.95 and for the second JMR(P̂ ) = 1.70,

which is significantly smaller. Notice that we only changed

the reference model, whereas the data were the same – no

additional experiment was required for the redesign.

It is important to highlight here that even when the flexible

reference model does not allow to achieve the matching con-

dition (14), the NMP transmission zero can still be identified

with good precision.
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Fig. 1. Comparison of the closed-loop responses of system (23) with
controllers (25) and (26).

2) Assumption 1 is satisfied: When Assumption 1 is sat-

isfied, we know a priori what is the best controller: the one

that provides exactly the performance that has been specified.

Thus the study of this case allows to show that the method

does converge to the optimal solution.

Consider the following flexible reference model Td(q, η) =
η1q+η2

(q−0.8)(q−0.6)I, which satisfies Assumption 1 for a centralized

PID controller.

We again minimize (16) using the iterative procedure (18)–

(19). Table I shows the evolution of the estimated reference

model parameters for some iterations, as well as the interme-

diate cost J̃V R(η, P̂ (i−1)) and the final cost J̃V R(η̂(i), P ).

TABLE I
EVOLUTION OF ESTIMATED NUM(Td(q)) AND VRFT COST FUNCTION

i num(Td(q)) J̃V R(η, P̂ (i−1)) J̃V R(η̂(i), P )
1 0.13004(q − 0.3848) 67.764 6.497

2 0.06105(q + 0.3103) 8.786 6.450

3 −0.01139(q − 8.0194) 8.731 6.181

4 −0.08420(q − 1.9501) 8.332 5.641

10 −0.35951(q − 1.2225) 1.945 1.019

30 −0.4(q − 1.2000) 2.1× 10−4 1.0× 10−4

At i = 30 we obtained Td(q, η̂
(30)) = −0.4(q−1.2)

(q−0.6)(q−0.8)I,

C(q, P̂ (30)) =




0.6(q−0.8)(q−0.9)
q(q−1)

−0.8(q−0.8)(q−0.9)
q(q−1)

−0.5(q−0.8)(q−0.9)
q(q−1)

0.4(q−0.7)(q−0.8)
q(q−1)


 ·

A good estimate of the NMP transmission zero is already

obtained at iteration i = 10. Suppose now we would like to

make loop 2 slower than loop 1, with a pole at q = 0.9.

According to [9], we can properly choose the reference model

as

Td(q) =




−0.4(q−1.2)
(q−0.6)(q−0.8) 0

0 −0.3(q−1.2)
(q−0.4)(q−0.9)


 , (27)

and proceed with Step 2 of the proposed methodology. The

obtained controller is then

C(q, P̂ ) =




0.6(q−0.8)(q−0.9)
q(q−1)

−0.6(q−0.8)(q−0.9)
q(q−1)

−0.5(q−0.8)(q−0.9)
q(q−1)

0.3(q−0.7)(q−0.8)
q(q−1)


 · (28)

Fig. 2 shows the evolution of the reference model choices

T̃d(q), Td(q, η̂
(30)) and (27), and the closed-loop response of

system (23) with controller (28), which has exactly the desired

behavior (27) specified in Step 2.
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Fig. 2. Evolution of reference model choices and closed-loop response of
system (23) with controller (28).

B. Process with one minimum phase transmission zero

Consider now a process described by

G2(q) =




25/24(q−0.7)
(q−0.9)(q−0.8)

0.625
(q−0.8)

0.4
(q−0.8)

1.2(q−0.78)
(q−0.9)(q−0.8)


 (29)

which has a minimum phase transmission zero at q = 0.6 with

yz = [−0.755 0.655]T . A batch of data is obtained from a

closed-loop experiment with C(q, ρ(0)) = 0.5I and we explore

both cases considering the satisfaction of Assumption 1.

1) Assumption 1 is satisfied: Let the flexible reference

model be Td(q, η) = η1q+η2

(q−0.85)(q+0.36)I , which satisfies As-

sumption 1. Minimization of (16) with 30 iterations resulted

in:

Td(q, η̂
(30)) =

0.5283(q − 0.6138)

(q − 0.85)(q + 0.36)
I,

C(q,P̂ (30))=











0.632(q−0.90)(q−0.78)
q(q−1)

−0.33(q2−1.805q+0.814)
q(q−1)

−0.21(q2−1.807q+0.817)
q(q−1)

0.549(q−0.90)(q−0.69)
q(q−1)











·

Closing the loop with controller C(q,P̂ (30)) and applying the

same reference as presented in Fig. 1 yields a cost JMR(P̂ ) =
1.6257× 10−4.

2) Assumption 1 is not satisfied: Let the flexible reference

model be Td(q, η) =
η1q+η2

(q−0.85)(q−0.4)I , which does not satisfy

Assumption 1. Minimization of (16) with 30 iterations resulted

in:

Td(q, η̂
(30)) =

0.65615(q − 0.8628)

(q − 0.85)(q − 0.4)
I,

C(q,P̂ (30))=









0.788(q−0.95)(q−0.13)
q(q−1)

−0.41(q−1.03)(q−0.20)
q(q−1)

−0.263(q−1.04)(q−0.20)
q(q−1)

0.684(q−0.90)(q−0.078)
q(q−1)









·



Notice that the identified transmission zero (q = 0.8628)

is very different from the correct value (q = 0.6), whereas

in the NMP example identification of the transmission zero

was quite precise, even when Assumption 1 was violated. It

is well known in SISO identification theory that NMP zeros

are easier to identify than minimum-phase ones [15], and this

example shows that this is also the case here. For lack of

space we do not present the step responses for this example.

However, closing the loop with controller C(q,P̂ (30)) and ap-

plying the same reference as presented in Fig. 1 yields a cost

JMR(P̂ ) = 0.0483. It is remarkable that, because minimum-

phase zeros do not pose critical performance limitations, the

resulting controller still provides closed-loop stability and a

performance that is very close to the one specified.

C. The noisy unmatched-case

Consider again the NMP system (23) example, in closed-

loop with the controller C(q) = 0.5I . We applied a PRBS

with amplitude 1 and length of 1260 samples in the reference

and the output is corrupted by white noise with σ2 = 0.025
(SNR ≈ 25 dB) which represents v(t) in (3). Consider

also the parametrized reference model (24), representing the

unmatched-case, which happens in the most practical cases.

We performed 2000 Monte Carlo experiments (in order to

estimate 1000 controllers using instrumental variables), with

70 iterations each2 and the estimated zero is shown in Fig. 3.

From the experiments, 29 resulted in estimations of the

NMP transmission zero with error larger than 5%; 225 re-

sulted in estimations of the NMP transmission zero with error

between 2–5%; and 746 resulted in estimations of the NMP

transmission zero between a 2% margin around the actual

value; all of them resulted in stable closed-loops. From this

batch we get a mean value of µẑnm
= 1.215, which is almost

equal to the one obtained in the noiseless case. The standard

deviation of the estimate was σẑnm
= 0.0224. Worst-case

scenario, we obtained ẑnm = 1.372 with JMR(P̂ ) = 24.1.

V. CONCLUSIONS

Based on a previous procedure elaborated for SISO systems,

we have extended the MIMO-VRFT method to cope with

NMP multivariable plants. By means of a flexible reference

model, the optimization is able to simultaneously identify

NMP transmission zeros and include them in the reference

model to find the optimal controller parameters, while keeping

the “one-shot” characteristic of VRFT. The design procedure

is purely data-driven – that is, model-free – and the case

studies presented have shown that it provides convergence to

the optimal controller, being applicable even when Assumption

1 is not satisfied (which represents most practical situations).

The identification of the transmission zeros’ directions with

a similar data-driven procedure would allow to achieve better

closed-loop performance and is a topic for future research.

2Our MatLab code takes less than 0.7 s for each simulation in a laptop
PC, Intel Core i3, 4GB RAM; the whole Monte Carlo experimentation took
695 s.
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Fig. 3. Identified transmission zeros in 1000 Monte Carlo experiments; the
2% and 5% error margins are shown by the red and black horizontal lines,
respectively.
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L. Campestrini, “Application of virtual reference feedback tuning to a
non-minimum phase pilot plant,” in 2016 IEEE Conference on Control

Applications, 2016, pp. 1318–1323.
[7] L. Ljung, System identification: Theory for the user, 2nd ed. New

Jersey: Prentice Hall, 1999.
[8] K. Havre and S. Skogestad, “Effect of RHP zeros and poles on

performance in multivariable systems,” in IEE Conference Publications,
vol. 2. London, England: IEEE, 1996, pp. 930–935.
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