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Abstract—In this paper we propose a particular structure
for resonant controllers and a tuning method of the Ziegler-
Nichols type for their tuning. Performance criteria for resonant
controllers are also defined. The effectiveness of the tuning rules
is illustrated by their application and corresponding performance
assessment in a test batch consisting of four representative classes
of processes. The control performance is analyzed in detail for one
particular example, shedding light on the virtues and limitations
of the control structure and of the tuning method.

I. INTRODUCTION

The Internal Model Principle is a basic concept in control
systems that can be found in most control textbooks. It
states that in order to track a given reference, or to reject
a given disturbance, the controller must contain the reference
or disturbance model. When the references or disturbances
are steps, which is by far the most common case, this internal
model is formed by an integrator, hence the widespread use of
PID controllers. Another class of references and disturbances
commonly found are those of sinusoidal nature. In this case
the controller must have a resonance frequency equal to that
of the reference or disturbance, hence the denomination of
resonant controller. Some applications of resonant controllers
include Uninterruptible AC Power Sources (UPSs) [9], [7],
active filters [3], engine fuel injection [8], and vibration
control in flexible structures [4], [6]. In this last class of
applications the controller reduces the resonant peaks of the
loop’s frequency response through the application of high-Q
resonant controllers. Typically, the controller parameters are
tuned considering the knowledge of the process model, unlike
PID controllers, whose tuning can be made with a set of
experimental rules.

Although the internal model principle is a well known fact
taught at basic undergraduate courses in control systems, it
does not necessarily represent the standard industrial practice.
It is not rare to find practical applications in which PID
controllers are favored even when the internal model principle
prescribes the application of a resonant controller. Sometimes
this choice is simply unjustified, and steady-state tracking
errors result. In other cases the use of PID controllers in lieu
of resonant controllers is justified by reformulating the control
problem such that the reference and/or disturbance becomes
a step. It is the case, for instance, in many applications
involving UPS’s (uninterruptible AC power sources): instead
of following the sinusoidal reference signal, the phase and
amplitude of this sinusoid are calculated and control loops
for each one of these variables (which are of the step type)
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are implemented with PID controllers. This approach not
only complicates the implementation but also causes delays
in the control loop due to the computation of RMS value,
deteriorating performance and reducing stability margins. Only
recently resonant controllers for UPSs started appearing in
the literature [9], but to this date this does not seem to have
become the dominant industrial practice.

One of the reasons for PID controllers to be so popular
is the existence of easily understandable and easily com-
putable tuning rules, that can be implemented even by the
layman or made algorithmic for application in auto-tuning.
The celebrated Ziegler-Nichols tuning formulae have been
proposed more than 70 years ago and are still widely applied
[10]. On the other hand there are standard structures for
PI(D) controllers and simple performance measures for step
references and disturbances that are well established since a
long time. In this paper we propose a standard parametrized
structure called Proportional Ressonant - PR controller, with
standard performances measures and, mainly, tuning rules
that generalize those commonly used for PI controllers. The
proposed method can be implemented experimentally in a
straightforward manner, through the same standard relay feed-
back experiment that is commonly applied in the PI and PID
cases, thus inheriting the simplicity that is probably the main
virtue of the Ziegler-Nichols and related methods.

A batch of representative processes has been proposed
by Astrom and Hagglund in [1] for assessing tuning rules
for PID controllers. We assess our tuning formulae for PR
controllers using four different classes of processes from this
test batch, with varying parameter values, resulting in 10
different processes. Counting the different reference frequen-
cies and different tuning points tested for each process, we
have performed 76 distinct and representative tests. These are
presented in Section V, where we analyze in detail one class of
processes, applying two different tuning rules for five different
reference frequencies, and in Section VI where we summarize
the performance results for the other three classes of processes.

II. PRELIMINARIES

A. Notation

The lower case letters u(t), y(t), e(t), r(t), qu(t) and qy(t)
indicate the time domain signals in the control loop, whereas
capital letters indicate their corresponding Laplace transforms
- respectively U(s), Y (s), E(s), R(s), Qu(s) and Qy(s). We
consider linear time invariant causal (LTIC) plants which are
described in the Laplace domain by

Y (s) = G(s)[U(s) +Qu(s)] +Qy(s) (1)

where G(s) is the plant’s transfer function, U(s) is the control
input, Y (s) is the plant’s output (the controlled variable),



Qu(s) and Qy(s) are the disturbances at the plant’s input
and output respectively. The plant is controlled with unitary
feedback by an LTIC controller, that is:

E(s) = R(s)− Y (s) (2)
U(s) = C(s)E(s) (3)

where R(s) is the reference, E(s) is the tracking error and
C(s) is the controller’s transfer function.

The control objective is to track a given class of reference
signals with zero tracking error in steady-state for a given
class of disturbances. In other words, the closed-loop system
(1)-(2)-(3) must be stable and satisfy limt→∞ e(t) = 0.

B. Time domain performance assessment

Performance of control systems is usually specified by crite-
ria defined in terms of the system’s response to a step reference
signal: the settling time ts and the maximum overshoot Mo.

1) Constant reference: Let the reference be a step, that is

r(t) = 0 ∀t < 0 r(t) = r ∀t > 0,

where r is some given constant. The settling time is defined
as the smallest time at which the tracking error becomes
sufficiently small, that is:

ts = min
t1

: | en(t) |< ε ∀t > t1 (4)

where en(t)
∆
= e(t)

r is the normalized tracking error and ε is a
user defined tolerance - usually ε ∈ [0.02; 0.05]. The maximum
overshoot Mo is defined as follows. Let M be the maximum
amplitude achieved by the output during its transient response
to a step reference:

M = max
t
| y(t) |

then
Mo = max(

M− | r |
| r |

, 0)

2) Sinusoidal reference: Let us now define similar mea-
sures for sinusoidal reference signals, in order to assess the
performance of the corresponding controllers in a systematic
and standard-compliant way. Let ar > 0 be the amplitude of
the sinusoidal reference, that is,

r(t) = 0 ∀t < 0 r(t) = ar sin(ωrt) ∀t > 0

for some frequency ωr ∈ R. Replace r by ar and then define
settling time and overshoot in the same way as for the step
reference, as follows. For the settling time, use definition (4)
with en(t) =

e(t)
ar

. It may be convenient to express the settling
time in number of periods of the reference instead of (or in
addition to) time units, that is, to use the following measure:

ns =
tsωr

2π
(5)

For the overshoot, redefine Mo as

Mo = max(
M − ar
ar

, 0). (6)

III. THE PROPORTIONAL RESONANT CONTROLLER

In this Section the structure of the PR controller is pre-
sented, inspired and justified by the classical proportional
integral (PI) control.

A. The PI controller

A PI controller generates two control actions then combines
them to form the signal to be applied to the plant:

U(s) = Ui(s) + Up(s). (7)

In (7) Ui(s) is the integral control action and Up(s) is the
proportional action. These are defined as

Ui(s) =
ki
s
E(s)

Up(s) = kpE(s)

Hence the transfer function of a PI controller is given by

Cpi(s)
∆
=

U(s)

E(s)
=
ki
s

+ kp (8)

= kiCi(s) + kpCp(s) (9)

with seemingly obvious definitions for Ci(s) and Cp(s) .
The fundamental role of a PI controller is to guarantee

zero steady-state error when the reference and the disturbances
acting on the plant are piecewise constant. This is achieved by
the integral action alone, and the proportional action is zero
in steady state. Hence, the most fundamental control action
is the integral action and it could, at least in principle, be
applied by itself to achieve this goal for a large class of
processes. Indeed, any stable minimum phase process can
be controlled by a purely integral controller, provided that
sufficiently small integral gain is used. However, transient
performance and stability margins with purely integral control
could, and usually would, be unacceptably poor. Hence an
additional term is added to the control law in order to improve
transient performance and robustness, and to achieve closed-
loop stability for a larger class of processes. This additional
control action is the proportional action, which can be seen as
the derivative of the most fundamental integral action, that is:

Cp(s) = sCi(s) (10)

B. The Proportional Resonant (PR) Structure

Consider now a different class of references to be tracked
and disturbances to be rejected: sinusoids with a fixed fre-
quency ωr. The fundamental task of the resonant controller is
performed by the following, fundamental, control action:

Cr(s) =
s

s2 + ω2
r

(11)

where ωr is the frequency that must be followed and/or
rejected. The integral control action Ci(s) is a particular case
of the resonant control action (11), obtained by setting ωr = 0.
In vibration control, the fundamental control action is slightly
more general, containing the model of a damped sinusoid
instead of a pure one as in (11) [4], [6]. Like the integral
action in the constant reference case, this fundamental control



action is capable by itself of providing the basic stability plus
zero steady-state tracking error for a large class of processes.

Like in the constant reference case, additional control
actions must be included in order to achieve appropriate
performance. To define such an additional control action, let
us apply the same principle as in PI controllers, expressed
in (10). Taking the derivative of the fundamental (resonant)
control action yields:

Cp(s) = sCr(s) (12)

which added to the resonant control action results in the
Proportional Resonant (PR) controller:

Cpr(s) = kr
s

s2 + ω2
r

+ kp
s2

s2 + ω2
r

. (13)

where kr, kp ∈ R are parameters to be tuned.

IV. ZIEGLER-NICHOLS TUNING

A. Classical tuning rules for PID controllers

One of the reasons for PID controllers to be so popular is
the existence of easily understandable and easily computable
tuning rules, that can be applied even by the layman or
made algorithmic for application in auto-tuning. Huge amounts
of literature have been produced on PID tuning rules and
a myriad of methods have been proposed and successfully
applied, such as λ-tuning, Cohen-Coon, MIGO, etc, to name
just a few - see [1] for a thorough overview. These methods,
even those proposed for multivariable processes [2], constitute
variations of the methods proposed in the seminal work [10].
In [10], J.G. Ziegler and N.B. Nichols proposed a tuning
method that consists in causing an oscillation in closed-
loop, measuring the oscillations’ frequency and amplitude and
then applying simple formulas for each controller parameter,
formulas that involve these measurements. In this paper this
method, to be called the forced oscillation method, will be
explored and adapted to PR controllers.

The forced oscillation method is based solely on the knowl-
edge of the ultimate point of the plant’s frequency response.
The ultimate point for a given transfer function is the point
at which its Nyquist plot crosses the negative real axis -
equivalently, the point corresponding to the smallest frequency
for which its phase reaches the value −π. The characteristics
of the ultimate point are the ultimate frequency ωu and the
ultimate gain Ku, which are defined as

ωu = min
ω≥0

ω : ∠G(ω) = −π

Ku =
1

| G(ωu) |
.

With these definitions, the most contemporary interpretation
of the forced oscillation method can be summarized as follows.

1) identify the ultimate point of the process’ frequency
response, that is, determine ωu and Ku;

2) choose the parameters of the controller such that
C(ωu)G(ωu) = p, or equivalently

C(ωu) = −Kup, (14)

where p is a prespecified location in the complex plane.

The first step of the method is usually performed by means
of a relay feedback experiment. Relay feedback consists in
a closed-loop experiment in which the following nonlinear
control is applied:

u(t) = d sign(e(t)) + b. (15)

In (15) sign(·) is the sign function (sign(x) = 1 for positive
x and sign(x) = −1 for negative x), d ∈ <+ is a parameter to
be chosen and b ∈ < is the bias. The bias parameter b must be
adjusted so that the oscillation is symmetric. In most practical
applications a hysteresis is added to the relay feedback (15)
in order to prevent spurious switching due to noise. Once a
symmetric oscillation is obtained in the relay experiment, its
amplitude Au and period Tu are measured and the ultimate
quantities are calculated from [1]

Ku =
4d

πAu
ωu =

2π

Tu
(16)

The second step of the method is accomplished by solving
equation (14) for the controller’s gains ki, kp, kd with the
chosen location p. This is a complex equation with two
unknowns for PI and three unknowns for PID. Thus for PID
controllers there is one degree of freedom in the choice of the
controller’s parameters, which is usually removed by imposing
the additional constraint that the two zeros of the controller’s
transfer function are the same.

Under the reasonable assumption that the frequency re-
sponse of the process is sufficiently smooth, shifting the
ultimate point away from −1 in the complex plane implies
shifting the whole frequency response away from it, thus
leading to good stability margins. Different locations p have
been proposed over the years, each one providing different
transient performance and stability margins. The original
Ziegler-Nichols tuning formulas in [10] correspond to

p = −0.4 + 0.08 (17)

for PI controllers. Another famous set of formulae is the
one by Tyreus and Luyben, which corresponds to shifting the
ultimate point to

p = −0.31 + 0.023 (18)

for PI controllers, usually resulting in more conservative tuning
than the Ziegler-Nichols formulae [5].

B. Tuning of PR controller

The forced oscillation method is very practical for experi-
mental implementation, which is an important reason behind
its widespread application. In order to obtain an equally
practical method for the tuning of PR controllers, let us apply
the rationale of the forced oscillation method to this class of
controllers. The frequency response of the PR controller is

C(ω) =
krω − kpω2

ω2
r − ω2

(19)

Substituting (19) into the tuning equation (14) yields

krωu − kpω2
u

ω2
r − ω2

u

= −KuRe(p)− KuIm(p) (20)



or, isolating the controller’s gains:

kr = KuIm(p)
ω2
u − ω2

r

ωu
kp = KuRe(p)

ω2
r − ω2

u

ω2
u

(21)

where Re(p), Im(p) are the real and imaginary parts of p.
It is immediately seen that for ωr ≈ ωu the controller’s

gains will be close to zero, and poor performance is to be
expected in this case. It is important to notice that this is not
a limitation of the tuning rules just proposed; it is rather a
limitation of the controller structure. Indeed, when ωr ≈ ωu

the controller structure presents very large gains in a range
around the ultimate frequency of the process, which is only
slightly changed by it. Thus the loop transfer function will
necessary have very large gains around the negative real axis.
This will become clearer in the frequency response analysis
of the example to be presented in Section V.

It is also worth noticing that Re(p) < 0, thus for ωr > ωu

the proportional gain will be negative. This seems rather odd
from a practical point of view, but so is the attempt to track a
reference of such a high frequency compared to the bandwidth
of the process. Nevertheless the gains provided by (21) yield
satisfactory performance, even when negative, in the many
examples to be presented in Sections V and VI.

In order to validate the proposed methodology for tuning
the parameters of PR controllers, it will be applied to a batch
of representative processes, extracted from [1], in Section VI,
using both the Ziegler-Nichols point (p defined in (17)) and the
Tyreus-Luyben point (p defined in (18)). But first, we detail
its application to one particular process in Section V.

V. A BENCHMARK CLASS OF PROCESSES

In order to illustrate the features of the proposed tuning
methodology, a specific process class was chosen from the set
of processes presented by Astrom and Hagglund in [1]:

G(s) =
e−s

(sT + 1)2
. (22)

In this Section the application to this class of processes of the
tuning rules proposed is explored in detail.

A. A particular case

In this Subsection detailed results are presented and dis-
cussed for the particular process (22) with T = 10 sec. Five
different reference sinusoidal signals, with unit amplitude and
with different frequencies, have been considered.

The first step for application of the tuning method is to
define the amplitude and the frequency of the output process
variable considering the relay experiment. For this case, the
parameters of the equation (15) were defined as b = 1, which
will result in a symmetric oscillation for a unit step reference,
and d = 2. The signal presented in Figure 1 represents the
process’ output signal considering as reference input a step
with amplitude one. Based on this experiment it is possible to
determine the amplitude and the period of the self oscillating
part of the signal as Au = 0.13 and Tu = 15 seconds.
This information is used to calculate the ultimate gain Ku
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Fig. 1. Closed-loop response for the relay experiment.

and ultimate frequency ωu from equations (16), resulting in
Ku = 19.58 and ωu = 0.42rad/s.

For each different frequency of the reference signal the
PR tuning is different, according to the tuning formulae (21).
Consider initially a reference with frequency ωr = 0.1ωu; then
the controller gains are calculated from (21) as kp = 7.75 and
kr = 0.65 for the ZN point, and kp = 6.01 and kr = 0.18 for
the TL point. The resulting reference and the output signals
for each set of gains are presented, respectively, in Figures
2(a) and 2(b).
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(a) ZN point
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(b) TL point

Fig. 2. Reference and output signals for ωr = 0.1ωu

A frequency response analysis provides a clearer picture.
The Nyquist diagrams of the process’ transfer function and
of the loop transfer function with each one of the controllers
designed are shown in Figures 3 and 4. Only the loop transfer
function with Ziegler-Nichols (ZN) tuning in shown in Figure
3 since in this scale the loop transfer function with Tyreus-
Luyben (TL) tuning would look the same and the process’
transfer function would not be discernible because of its
finite size. Notice that because of the controller’s poles at the
imaginary axis the Nyquist diagram tends to infinity at these
frequencies ±ωr (hence the absence of scale in this plot).
A zoom of this plot is shown in Figure 4, where it can be



seen that the Nyquist diagrams of the loop transfer functions
with the two controllers do not encircle the point −1 and that
the Tyreus-Luyben tuning provides larger stability margins, as
expected. The frequency response is smooth enough around
the negative real axis so that shifting the ultimate point away
from −1 guarantees good stability margins.

Consider now a frequency closer to the ultimate frequency:
ωr = 0.5ωu. The corresponding Nyquist diagrams are shown
in Figure 5; only the zoomed version is presented in this case.
It is seen that the proximity of the reference’s frequency to
the ultimate frequency causes the diagram to pass close to
−1. Here, shifting the ultimate point away from −1 does not
guarantee good stability margins; the nearby points are not
shifted along because the frequency response is not sufficiently
smooth in this range of frequencies. The stability margins
are much smaller than in the previous case (ωr = 0.1ωu)
and, accordingly, poorer transient response is to be expected.
Indeed, this is confirmed by the time domain results presented
in Figures 6(a) and 6(b), where the system’s response to a
reference with frequency ωr = 0.5ωu is presented for each
controller setting (ZN and TL); the corresponding performance
measures are presented in Tables I and II.
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Fig. 3. Nyquist diagram of the loop transfer function for ωr = 0.1ωu with
ZN tuning; the semicircles in the graph have infinite radius

Three additional experiments were performed with ωr =
0.2ωu, ωr = 2ωu and ωr = 5ωu. The simulation results
are presented in Figures 7(a) to 9(b), while the controller’s
settings and the resulting performance measures (settling times
and overshoots) appear in Tables I (for ZN point) and II (for
TL point). The controller’s gains and performance measures
in these Tables summarize the overall performance of the
closed loop system for a wide range of frequencies of the
reference signal. As expected, the performance deteriorates
as the frequency of the reference approaches the ultimate
frequency. For frequencies within one octave of the ultimate
frequency the performance is poor, even becoming unstable
in some cases (not shown in these Tables). It is worth noting
that for frequencies above the ultimate frequency the gains are
negative - which is clear in the formulae (21).
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Fig. 4. Nyquist diagrams for ωr = 0.1ωu: process (full line), TL tuning
(dashed) and ZN tuning (dash-dot)
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Fig. 5. Nyquist diagrams for ωr = 0.5ωu: process (full line), TL tuning
(dashed) and ZN tuning (dash-dot)

TABLE I
PERFORMANCE MEASUREMENTS - ZN POINT

ωr kp kr ns Mo

0.1 ωu 7.75 0.65 2.83 0.00

0.2 ωu 7.52 0.63 2.81 0.14

0.5 ωu 5.87 0.49 32.77 0.54

2.0 ωu -23.50 -1.96 5.78 0.21

5.0 ωu -188.04 -15.75 3.63 0.13

B. Different time constants

Another set of tests were performed with the process class
(22) using three other different values for the parameter T .
Tables III and IV summarize the results obtained for the
process parameter T = 0.5 seconds, whose ultimate frequency
is ωu = 1.74 rad/s. Tables V and VI summarize the results for
T = 1.0 seconds, with ωu = 1.34 rad/s. Finally, Tables VII
and VIII summarize the results for T = 5.0, with ωu = 0.59



0 100 200 300 400 500
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

time in seconds

re
fe

re
nc

e 
an

d 
ou

tp
ut

 si
gn

als
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Fig. 6. Reference and output signals for ωr = 0.5ωu.
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(a) ZN point

0 100 200 300 400 500
−1.5

−1

−0.5

0

0.5

1

1.5

time in seconds

re
fe

re
nc

e 
an

d 
ou

tp
ut

 si
gn

als
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Fig. 7. Reference and output signals for ωr = 0.2ωu.

TABLE II
PERFORMANCE MEASUREMENTS - TL POINT

ωr kp kr ns Mo

0.1 ωu 6.01 0.18 1.71 0.09

0.2 ωu 5.82 0.18 1.22 0.12

0.5 ωu 4.55 0.14 5.63 0.35

2.0 ωu -18.21 -0.56 7.86 0.22

5.0 ωu -145.73 -4.53 4.30 0.06
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(a) ZN point
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Fig. 8. Reference and output signals for ωr = 2ωu.
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Fig. 9. Reference and output signals for ωr = 5ωu.

rad/s. The blank cells appearing in some of these tables denote
an unstable closed loop system. It is observed that appropriate
performance is obtained in most cases.

VI. A TEST BATCH

The tuning formulas have also been tested for the following
three classes of processes from the test batch proposed by
Astrom and Hagglund in [1]:

G1(s) =
1

(s+ 1)((sT )2 + 1.4Ts+ 1)
(23)



TABLE III
PERFORMANCE MEASUREMENTS (T = 0.5 S) - ZN POINT

ωr kp kr ns Mo

0.1 ωu 0.67 0.23 1.15 0.00

0.2 ωu 0.65 0.22 1.65 0.00

0.5 ωu 0.51 0.18 1.77 0.02

2.0 ωu -2.04 -0.71 - -

5.0 ωu -16.29 -5.69 - -

TABLE IV
PERFORMANCE MEASUREMENTS (T = 0.5 S) - TL POINT

ωr kp kr ns Mo

0.1 ωu 0.52 0.07 3.36 0.06

0.2 ωu 0.50 0.06 3.41 0.05

0.5 ωu 0.39 0.05 2.73 0.00

2.0 ωu -1.57 -0.20 - -

5.0 ωu -12.63 -1.65 - -

TABLE V
PERFORMANCE MEASUREMENTS (T = 1.0 S) - ZN POINT

ωr kp kr ns Mo

0.1 ωu 1.00 0.27 0.91 0.00

0.2 ωu 0.98 0.26 1.21 0.00

0.5 ωu 0.76 0.20 2.85 0.155

2.0 ωu -3.05 -0.82 6.55 0.180

5.0 ωu -5.35 -1.43 - -

TABLE VI
PERFORMANCE MEASUREMENTS (T = 1.0 S) - TL POINT

ωr kp kr ns Mo

0.1 ωu 0.78 0.08 2.43 0.06

0.2 ωu 0.76 0.07 2.93 0.06

0.5 ωu 0.59 0.06 2.03 0.00

2.0 ωu -2.37 -0.23 5.43 0.09

5.0 ωu -4.14 -0.41 - -

TABLE VII
PERFORMANCE MEASUREMENTS (T = 5.0 S) - ZN POINT

ωr kp kr ns Mo

0.1 ωu 4.03 0.48 2.34 0.067

0.2 ωu 3.91 0.47 1.66 0.112

0.5 ωu 3.05 0.36 8.35 0.389

2.0 ωu -12.22 -1.46 3.94 0.081

5.0 ωu -32.59 -3.90 2.14 0.00

G2(s) =
1

(s+ 1)n
(24)

G3(s) =
1

(s+ 1)(1 + αs)(1 + α2s)(1 + α3s)
. (25)

For each class, different values of the model parameters
(respectively T , n and α) have been considered, and tests have

TABLE VIII
PERFORMANCE MEASUREMENTS (T = 5.0 S) - TL POINT

ωr kp kr ns Mo

0.1 ωu 3.12 0.14 1.11 0.11

0.2 ωu 3.03 0.13 1.72 0.07

0.5 ωu 2.37 0.10 3.92 0.25

2.0 ωu -9.47 -0.42 5.46 0.09

5.0 ωu -25.26 -1.12 2.77 0.00

TABLE IX
PERFORMANCE MEASUREMENTS (T = 0.1 S)

ωr kp kr ns Mo

0.1 ωu 6.30 13.20 2.68 0.05

0.2 ωu 6.11 12.80 2.00 0.06

0.5 ωu 4.77 10.00 5.91 0.33

2.0 ωu -19.09 -40.00 74.47 0.10

5.0 ωu -152.78 -320.00 11.41 0.00

10.0 ωu -630.25 -1320.00 22.33 0.00

TABLE X
PERFORMANCE MEASUREMENTS (T = 1.0 S)

ωr kp kr ns Mo

0.1 ωu 1.90 0.57 1.52 0.08

0.2 ωu 1.84 0.55 0.93 0.04

0.5 ωu 1.44 0.43 5.27 0.25

2.0 ωu -5.76 -1.72 6.33 0.04

5.0 ωu -46.12 -13.80 10.95 0.00

10.0 ωu -190.26 -56.93 21.80 0.00

been made for different frequencies of the sinusoidal reference
signal - ωr. As in the example presented in the Section V, the
first step in the test is the relay experiment, for which d = 2
and b = 1 has been used in all tests. Based on the relay
experiment it was possible to determine the amplitude Au and
the period Tu of the self oscillating part of the signal. Only
results with the Ziegler-Nichols point are presented.

For the process (23) with T = 0.1 seconds, the amplitude
and period of oscillation are Au = 0.16 and Tu = 0.6 seconds,
resulting in a self oscillation frequency ωu = 10.47 rad/s. The
set of data with the obtained results is synthesized in Table
IX. Another set of simulations was realized for this process
class considering the parameter value T = 1.0 second. In this
case, the amplitude for the self oscillating part of the process
output signal is Au = 0.53 with a period Tu = 4.2 seconds.
Table X summarizes the results obtained for this process.

For the process class in equation (24) also two set of
experiments were performed, with n = 3 and n = 5. For
the case with n = 3 the amplitude and the period of the
self oscillating part of the output signal are, respectively,
Au = 0.33 and Tu = 3.7 seconds, with ωu = 1.69 rad/s,
whereas for n = 5 we get Au = 0.85 and Tu = 8.8
seconds, with ωu = 0.71 rad/s. The resulting settings of the
PR controller and the performance measures for this process
are given in Tables XI and XII.



TABLE XI
PERFORMANCE MEASUREMENTS (n = 3)

ωr kp kr ns Mo

0.1 ωu 3.05 1.03 2.04 0.08

0.2 ωu 2.96 1.00 1.30 0.08

0.5 ωu 2.31 0.78 8.44 0.36

2.0 ωu -9.25 -3.14 6.39 0.06

5.0 ωu -74.08 -25.16 10.0 0.00

10.0 ωu -305.57 -103.78 19.86 0.00

TABLE XII
PERFORMANCE MEASUREMENTS (n = 5)

ωr kp kr ns Mo

0.1 ωu 1.18 0.17 1.05 0.07

0.2 ωu 1.15 0.16 1.28 0.02

0.5 ωu 0.90 0.13 2.56 0.14

2.0 ωu -3.59 -0.51 5.54 0.00

5.0 ωu -28.76 -4.10 - -

10.0 ωu -118.63 -16.94 - -

TABLE XIII
PERFORMANCE MEASUREMENTS (α = 0.1)

ωr kp kr ns Mo

0.1 ωu 40.33 241.37 7.49 0.12

0.2 ωu 39.11 234.05 32.05 0.27

0.5 ωu 30.55 182.85 - -

2.0 ωu -122.23 -731.42 8.09 0.29

5.0 ωu -977.84 -5851.40 5.11 0.00

10.0 ωu -4033.60 -24137.00 8.83 0.00

TABLE XIV
PERFORMANCE MEASUREMENTS (α = 0.9)

ωr kp kr ns Mo

0.1 ωu 1.57 0.36 1.33 0.08

0.2 ωu 1.53 0.35 0.78 0.04

0.5 ωu 1.19 0.28 3.59 0.23

2.0 ωu -4.77 -1.11 5.38 0.00

5.0 ωu -38.20 -8.88 34.05 0.09

10.0 ωu -157.56 -36.66 217.12 0.31

Finally, the class of processes presented in the transfer
function (25) has been considered, with two different values
for the parameter α. For α = 0.1, the amplitude and period
of oscillation associated with the self oscillating part of the
output signal are Au = 0.025 and Tu = 0.21 seconds,
corresponding to ωu = 29.91 rad/s; α = 0.9 results in
Au = 0.64 and Tu = 5.4 seconds, with ωu = 1.16 rad/s.
All the results concerning the set of tests realized for each
process are synthesized in Tables XIII and XIV.

It is seen in the results presented in this Section that:

• for ωr < ωu the performance is acceptable and similar
to what is obtained with the forced oscillation method in
PI tuning; stability is observed in all cases except one;

• for ωr < ωu the performance deteriorates as the reference
frequency approaches the ultimate frequency, as expected
from the analysis;

• for ωr > ωu the gains are negative and instability arises
in approximately 25% of cases.

VII. CONCLUSIONS

In this paper we have proposed a standard controller struc-
ture for Proportional Resonant controllers and a tuning method
for this class of controllers. The method is inspired by the
forced oscillation method for tuning of PI controllers, and
inherits the easiness of its experimental implementation. In
order to be able to effectively assess the performance of
the closed-loop system, we have also defined performance
measures similar to the ones used for constant reference
tracking.

When applied to a representative test batch, the tuning rules
result in a good performance for almost all cases, for reference
frequencies below the ultimate frequency. The resulting per-
formance and robustness are similar to those obtained with the
forced oscillation method for PI tuning, in which our method
is inspired. For the cases of reference frequencies above the
ultimate frequency, instability was observed in a few instances.

The existence of effective and easily understandable tuning
rules should contribute to widen the applicability of Internal
Model Controllers. We hope that the standardization of the
controller structure and of the performance measures may
contribute to this effect as well.

It was observed in the test batch that as the reference
frequency approaches the ultimate frequency, the closed loop
performance is seriously deteriorated. Future work will be
concentrated in mitigating this limitation.
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[1] K.J. Åström and T. Hägglund. PID Controllers, Theory, Design and
Tuning. Instrument Society of America, Research Triangle Park, NC -
USA, 1995.

[2] L. Campestrini, L.C. Stevanatto, and A.S. Bazanella. Tuning of mul-
tivariable decentralized controllers through the ultimate point method.
IEEE Transactions on Control Systems Technology, 17(6):1270–1281,
2009.

[3] S. Fukuda and T. Yoda. A novel current-tracking method for active
filters based on sinusoidal internal model. IEEE Transactions on Industry
Applications, 37(3):888–895, 2001.

[4] D. Halim and S.O.R. Moheimani. Spatial resonant control of flexible
structures - application to a piezoelectric laminate beam. IEEE Trans-
actions on Control Systems Technology, 9(1):37–53, 2001.

[5] W. Luyben, B. Tyreus, and M. Luyben. Plantwide Process Control.
McGraw-Hill, 2nd edition, 1998.

[6] S.O.R. Moheimani and B.J.G. Vautier. Resonant control of structural
vibration using charge-driven piezoelectric actuators. IEEE Transactions
on Control Systems Technology, 13(6):1021–1035, 2005.

[7] L.F.A. Pereira, J.V. Flores, G. Bonan, D.F. Coutinho, and J.M. Gomes
da Silva Jr. Multiple resonant controllers for uninterruptible power sup-
plies - a systematic robust control design approach. IEEE Transactions
on Industrial Electronics, 61(3):1528–1538, 2014.

[8] D. Rupp and L. Guzzella. Iterative tuning of internal model controllers
with application to air/fuel ratio control. IEEE Transactions on Control
Systems Technology, 18(1):177–184, 2009.

[9] R. Teodorescu, F. Blaajberg, M. Lisserre, and P.C. Loh. Proportional-
resonant controllers and filters for grid-connected voltage-source con-
verters. IEE Proceedings on Electric Power Applications, 153(5):750–
762, 2006.

[10] J.G. Ziegler and N.B. Nichols. Optimum settings for automatic con-
trollers. Transactions of the ASME, 64:759–768, 1942.


