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Abstract— This paper deals with the identification of piece- The majority of the identification methods proposed in
wise affine state-space models. These models are obtained bythe literature focus on the particular case of piecewisaaffi
partitioning the state or input domain into a finite number of autoregressive with exogenous inputs (PWARX) models [5]
regions and by considering affine submodels in each region. del b itt PWARX '
The proposed framework uses the Expectation Maximization (6], [7]. A PWASS, model can be wri en. as a
(EM) algorithm to identify the parameters of the model. In ~ Model, and the equivalence between them is well-known [8].
most of the current literature, a discrete random variable The authors in [8] have shown that any observable PWASS
with a discrete transition density is introduced to describe model admits a representation as a PWARX model. It has
the transition between each submodel, leading to a further hoen opserved that PWARX systems are strictly contained
approximation of the dynamical system by a jump Markov in the class of PWASS models and that the number of
model. On the contrary, we use the cumulative distribution .
function (CDF) to compute the probability of each submodel Submodels (and thus the number of parameters) might grow
given the measurement at that time step. Then, given the considerably when a PWASS model is converted into a
submodel at each time step the latent state is estimated using the minimum-order equivalent PWARX representation. On the
Kalman smoother. Subsequently, the parameters are estimated other hand, given a PWARX model withV, submodels,

by maximizing a surrogate function for the likelihood. The . . . . . .
performance of the proposed method is illustrated using the it is possible to find an equivalent PWASS model with

simulated model of the JAS 39 Gripen aircraft. N, submodels, but the equivalent PWASS model will not
Index Terms— Piecewise affine, expectation maximization, necessarily be a minimal realization [8].
state-space models Another reason that makes the PWASS representation be

more appealing compared to PWARX representation is that
) ) ) ] o ] ~ the majority of existing hybrid and piecewise analysis and
Qur goal in this paper is the identification of piecewisggnirol methods such as [9], [10] are based on SSM: and
affine state-space (PWASS) models. The PWASS modelgso SSM are more suitable to deal with multiple input and
are the next natural step in the approximation of non“”e%ultiple output (MIMO) systems [11].
state-space models (SSM); Instead of linearizing a noaline  The jgentification of PWASS models undergoes some
dynamical system by a single linear SSM, one can dividgjengifiability problems [12], [10]. If one assumes thatheit
it into several affine submodels turning the identificationne state is not fully measurable or that one does not fix some
of a nonlinear system into the identification of severaharameters, then the model will suffer from a realization
affine submodels. PWASS models are a particular case goblem, i.e., one can only determine the model up to a linear
piecewise affine (PWA) models. Such models are used ate transformation. For that reason, the few works that
approximate nonlinear dynamical systems and have beggg| with the identification of PWASS models have to make
considered in several fields, such as automatic control [1Jme assumption such as: minimum dwell-time assumption
signal processing [2] and computer vision [3]. They ar¢3] opservability and controllability assumptions fcaoh
obtained by partitioning the state or the input domain into 8,pmodel [14], known switching times assumption [15], and
finite number of polyhedral regions; and by considering ag,| state knowledge assumption [11].
affine submodel in each region. . In most of the current literature, a discrete random vaeiabl
The identification problem of PWA models is a chal-yit, 4 discrete transition density is introduced to deserib
lenging problem that involves the estimation of both thgne (ransition among the different regions, leading to a
parameters of the affine submodels and the coefficients thgtiner approximation of the dynamical system by a jump
define the boundaries of each region of the state domain. TRgyrkov model [16]. That is, the PWASS model is seen as an
tutorial paper [4] discusses the main issues and diffi@iltigytension of hidden Markov models (HMMs) in which each
connected to hybrid systems identification. HMM state is associated with a linear dynamical process.
*This work is supported by Swedish research council (VRyjgst ~S€veral nonlinear and linear HMMs structures have been
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approach, the submodels are a function of the state, that iS, | —_e— Piccewise Function
given the state the active submodel is totally defined. The EM e Measure Position
algorithm is used to identify the parameters of the subnsodel — p(xelyt)
that form the PWASS model. In the E-step of the EM | Pt =3y0)
algorithm, we have used the cumulative distribution fumeti
(CDF) to compute the probability of each submodel givens
all available measurements. In the M-step, the parameteE
are estimated by maximizing a surrogate function for the
likelihood function.

This paper is organized as follows; in sectloh Il is pre- |
sented the model structure that we will be working with. In
section[ll the EM algorithm for PWASS is presented and —
discussed. In sectidn]V the EM algorithm is used to identify K
a PWASS model. Finally, the concluding remarks are givehkig. 1: The shaded area represents the probability that the
in sectior[V. system be in determinate region delimited by the piecewise

function.

[’(Xrb’r)

[I. PROBLEM DEFINITION
Consider the following SSM

X1 = F(x¢) + Bu; + wy, (1a) Therefore, for a given regio®;, the model[(ll) is a condi-
(1b) tionally affine SSM

yi = Ox¢ + vy,
where the state vector, € R™= is partitioned by two scalar Xp1 = Aixe + Bug + b +wy, (7a)
variables7, and ¢;, and a vectory, € R("=~2) such that yi = Ox¢ + vy, (7b)
A T17T. v i :
xe £ [16,Goxi | ye € R™ is the measurement) € 1o indexi ¢ {1,---,N,} determines which piecewise

X x i 1 -DX u i . . . . . N
R is the known rriea}surement matrig, € R"*" IS atfine dynamic is activated at timteWe will assume that the
the input matrix,u, € R™ is the input. The initial state has iy ¢ is such that a direct measurement of the variable
a prior distributionx; ~ N (X1, P1j0), where the subscript |, -, to a scalar product) is available in the measurement
“t1]t2" is read “at timet; using measurements up to t'mevectoryt and it is denoted by,

t2", and N(p, 32) means a Gaussian distribution with mean  asq(ming that the piecewise function is continuous, that
p and covariances. The process nois¢w, € R |1 <

means,
t < T} and the measurement noige; € R™|1 < ¢t <
T} are mutually independent Gaussian noise sequences. Th@ili+1 + b = ait1liv1 + b1, i=1,...,N, =1, (8)
E;nllnear functionF(-) is the state transition matrix given we can write each one of thg's in @) as
oTx, Ji=ain + by, 9)
.F(Xt) é d)TZt—Ff(?’]t) s (2) fl :ai7]t+b’ia 1= 2?"';NT" (10)
Fx where
with @ € R, F e RO=-2xm 5, 2 [¢, xT]", ¢ € =
R(==1 and f(n,) is a piecewise affine function such that bi = —aili + by +arh + Y a;(lj1 — 1)), (11)
j=1
= i < . N . -
Jr=aim+ b il <m <, The identification problem consists of finding the param-
f) =4 (3) eters
i 02 Hai} (b}, P, ¢ (12)
fn,. =an.n+bn,. if Iy, < <lIn.41, ifi=1Wisi=1,4%
wherel;, 1 = 1,..., N,.+1 are the boundaries of each regionbased ony;.r (andu;.7), wherey;.r is a collection ofT’
that form the piecewise function. Rewritinigl (2) for a regionobservations. For the continuous piecewise function,gusin
Ri = {n: l; < <lip1} using [3) we obtain (I1) the identification problem will be to find
[ o 0 = {{ai}s, b, F 0,0}
- 1 i=1Y1, L% 7¢ . (13)
F(xi) = | 2z +am; +b; (4) '
L Fxy [1l. SOLUTION USING EM
- A ,.13; The EM algorithm is an iterative method which is useful
T 0 for approaching maximum likelihood estimate of unknown
= |[a; ¢"]| x¢ + |bi (5) parameted in probabilistic models involving latent variables
F 0 defined by

= A;x; + b;. (6) Orrr = af% Héax po(y1:7]0). (14)
€



TABLE I: E-step of EM algorithm distribution forr,

1: Inputs: A;,b;,l;, ¢ = 1...,N, , B, C, Q, R, uj.r, . .
yiT,X1j0, P1jo p(rily:e) = p(re = ilys), i=1,---,N,

2: for j =1to M do )

3: §1\1<_§1|0 = N(nt;yta[R](l,l)) dnta v = 17 ,NT

4. Pl‘l <—P1|0 NtE€ER;

5: fort=1toT —1 do (18)
Sample Submol(jel Trajectory.1

6: i~ [N gy [R)y) dm, i=1,.., N, where[R](; 1) is the element of the first row and first column

Kalman filter prédiction step
: Xppie & A (HXee + Bur + by
t t

Pyiqe AT§j>Pt\tA;F(_7»> +Q
t

of R. Fig. [I shows the PDF(x:|y:) and a piecewise
function with four regions. The shaded area represents the
probability that the system be in region three given the

Kalman filter update step measuremeng;, i.e., p(r; = 3|y;). We will use the joint dis-

9: Y41+ CP 1, CT +R =ae ) .
M l(t::—ll - Pti‘i'é@z;ll tribution py (x1.7, y 1.7, 71:7|6) instead ofp (xv.7, y1.76) in
11 Rip1jer1 ¢ Kep1)e + Kep1(Yep1 — CRyqape) (I5). This joint density is given by
12: Piy1e41 ePt-H\t*Pt-~-1|tCTE,;11CPH-l\t
13: _end for p(x17, Y117, 1:7|0)

RTS smoother
14: Ppj.p < Pryr = p(xv.7|rir, O)p(yir X171, 0)p(rir|lyir, x1.7)  (19)
15: ﬁT\l:T < QT\T
16: fort=T—1toldo However, we notice that;|x; is deterministici.e., given
17: fo)_ FuieAr, [Pt“‘t]T x¢, . is totally determined. As a remedy we use
18: f@_t)fle f Pt“\TCft R p(ri.rlyr.r) instead of p(ri.r|ly1.r,x1.7) in (@9). Since
19: Xj1r < Xeje + GeKepar = Xepapr) the transition densityp(x;|x; 1,7:_1,6) is known to be
20: Py P+ Ge(Pryajir — Popa))GF NG| Ar,_ xi—1 + Bus_y +b,,_,,Q), the joint distribu-
g; ﬁ?fifﬂ {Tﬁj)} P tion p(x1.7,y1.7, r1.7|¢) can be approximated as in
agendfor o ) 20 a6 (x rr|0)
24: Outputs: TIJ:T’Pt\]lzT’xt\]lzT’Pt,thl\T’] =1,...,.M p\X1T, Y11, T1.T

~ p(X1:T|T1:T7 9)P(Y1:T|X1:Ta 0)p(T1:T|y1:T) (20)

= p(x1)p(y1lx1)p(r1ly1)
T

The main idea of the EM algorithm [20] is to compute an
auxiliary functionQ(#, 6;) as a surrogate for the likelihood X Hp(xﬂxt*l’”*l’}“*l’9)p(”|3’t)p(3’t|xt)’ (21)
po(y1.7]0). In the expectation step (E-step) of the EM =2
approach, first the following expectation should be comgputewhere p(y;|x;) = N (y:; Cxs, R). Hence, in the E-step of
A the EM approach we calculate the expected value of the log-

Q(0,0x) = By, [log p(x1.7, y1.7(0)[yr7] (15)  jikelihood p(rir, X1, y1.7|0) with respect to the observed
where E; [] denotes the expectation with respect to thélata and the previous estimag:
latent variable whose posterior is computed using the pre-

vious estimate of¢ denoted byd,. However, the joint Q(0,0k) = By, llogp(xv.r yur, rurlf)yr]  (22)

dlstrlbuuonp(xL_T,y13T|9) can not be com.p.uted ana_lyucally _ // log p(x1:7, Y175 71:7|6)

due to the nonlinearity of the state transition function.as

remedy, we use an approximation which uses a latent variable X p(x1.7, riryr, Ok) dxpr dry.r, (23)

representing the submodel at each time step denoted by _ _

and with the probability density function (PDF) then in the M-step the parameters are estimated by
p(ry) = / / p(x;) iy dz. (16) Opa = argmax Q(0, Or). (24)

ntER;
Hence;, € {1,2,--- ,N,} is a categorical random variable. We notice that the only part that depends @h

We definer,., A {r1,...,r} as the submodel trajectory up|n the joint posterior distribution [(21) is the term

to time ¢. Also, we can compute the posterior distribution o?é('\’/l(t‘)lct—l_’ Et—l’ yt—bl’ 6). Thus the auxiliary quar?ngy of tr:je
r; given the measuremest; via the following marginaliza- algorithm can be written as (omitting terms independent

tion of )
v [ pvdxopte) dnde @n Q00 =By fopbar.yirrir Olyial @9
Nt€ER; T
Assuming an uninformative prior or, and the fact that, ://Z2 (log N'(x4|Ar, ,%¢-1 + Bus—1 + by, ,,Q))
t=

is directly measured, where its corresponding measurement R
is denoted by, it gives the following categorical posterior X p(x1.7, rr|yr, Ok) dxr dryr, (26)



where the first term of[(26) can be written as (omittingSSM [21]. The algorithm in Tablé | presents the E-step of the

constant terms denoted l§r§/)

log N (x¢|Ar,_,%X¢—1 + Bus_1 +b,,_,Q)
£ (0, (0),s(x¢,x1-1)) +Ep,, (0), (27)

where (a,b) 2 tr(a”b) = aT - b denotes inner product and

proposed EM algorithm. The backward recursion equations
for the RTS smoother are given in the lines 14-20 of Table
[ Using the RTS smoother we can write the expectation

Eék |:S(Xt7 xt—l) |T§];"7 Y1:T:| as

By, |50t xe)lrip yir| =

b%Qfl Slsj)
A
T, (0) = 14701 , (28) - (5) () A7)
24, @ ;1”_1 Xt{1|1:T(Xt|jlzT')T + Pt,jtfl|1:T
| — (Butfl + bm) Q Am )ACE‘]]?T
[ xio1x OO 56) |+ BT
A txl_r ¢ Xt7—1|1:T(th—1\.1:T)T + Ptil|1:T
s(x, %4-1) = Xt 1; (29) )A{EJ—)IH:T
—1Xi-1
Xi—1

Here the superscript) means that the quantity is condi-
Also, VU, (0) and s(x;,x;_;) are the natural parameter andtioned to thej-th sampled trajectory,.r. Finally, inserting
the sufficient statistic, respectively. Further, (1) in (33) we find

- A T RTAH-1 Lor o1
Sy (9) = _utle Q b?”t - 7me bm (30) ~ 1 rM
- L2 ) Q)= >N ((9,0(0),57) +2,0:(0)).
denotes the log-partition function. The auxiliary quanof t—2 =1 ¢ ¢
the EM algorithm can thus be written as (omitting constant (38)

terms)
In the M-step, it is possible to calculate exactly the
gradient and the Hessian ¢f_{38) with respectitand use
- them within the Newton method to find the maximum of
(<\II” (6), g, [S(Xt’xtfl)lyer]>+Eék [Ere (9)|y1ﬂ> Q(6,6;). The quantities used T (B8) are the outputs of
(32) the algorithm in Tabléll. It is worth pointing out that the
T computational complexity to calculate {38) (% T M).
<‘1’n (6), Eq,, [S(Xt7Xt—1)|Y1:T]> +> En(0). (33

t=2

Q(8,6,) = E;, [log p(x1.7, y17, m1:7]0) |y 1:7] (31)

T

|1+

o~
Il
N

[+
M=

-
I
)

IV. NUMERICAL SIMULATION

In order to complete the calculation @3(0,0;), we need e will evaluate the methodology presented above through
to evaluate the expected value [n](33) with respect to thgn example of the identification of JAS 39 Gripen’s flight

observed data. This amounts to calculating the integral iflynamic in the longitudinal direction. The discretized SSM

(26). As in [21), the second term df {26) can be factorizedf the system is given by [22]

as )

T {Utﬂ} _ et Zyne + G+ ZCCt]
p(rir, Xy, Ok) = p(Xer|yir, rir, gk)Hp(Ttb’t)y Gt-1 L () + MG

= | 2o Zal 0w (300)

. (34) M;s, M| 0o b
where it was assumed that 0
T Vi = " 4, (39b)
_0 1 [

pOrirlyrr) = [ p(rye). (35)
t=1 where the process noisg and the measurement noiggare
Sincery,--- ,r, € {1,2,--- , N,.}, the number of possible Gaussian with known mean and covariangds the angle of
trajectories up to time is N, i.e., it grows exponentially attack,(; is the pitch rate of the aircrafé,, ando., are the
with time. The integral[{26) can be computed using variougleévator and canard control action. The nonlinear function
integration methods. We use Monte-Carlo integration, whei/ (1) is constructed as a continuous piecewise function with
the samples are drawn from N, known regions as in[{10). The goal is to identify the
parametersZ, = —0.9759, Z; = 1.174, M, = —1.2616

r ~plrlye), =1, M. (36) and the piecewise function values

When the samples are drawn, the remaining integral cafy ., \\N.+1] _ [
be computed analytically with the approximation of thea{q‘]l(ll)}i:1 } = [0.3240 0.0300 0.1260 0.9660 1.3800]

posterior of each trajectory to be Gaussian. With such gSnere the boundaries for each regibs: |
assumption, we can use the Kalman Smoother also called
Rauch-Tung-Striebel (RTS) smoother for linear and Ganssia

li,...,1l5] are

l=[-1°4°,7°,12°,16°).
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Fig. 2: Parameter identification over 100 EM iterations. Tihes show the averages (full line) and the true values of the
parameters (dashed line), the transparent shaded areasttsaipper and lower bounds over 150 independent runs for
different parameter initialization.

The system is simulated fdaF = 1 800 time steps and the L8

sample time isAt = 1/60s. The input signal is such that

all submodels are activated about the same amount of times. Z,

The parameters of the input matrix ats;, = 0.3043, Z;, =

0.0289 ,Ms, = —31.0898 and M;, = 8.2557. It is worth M,

mentioning that the system described [n1(39) is unstable, ol

so an LQ regulator is used [22]. This LQ regulator adds a

correlation between the control signal and the measurement -osr

noise as well as state noise. However, this is ignored here.
We have used (36) to sampld = 300 possible trajecto-

ries 1.7 and evaluate the integral on the right-hand side of

(26). The MATLAB functionfminunc is used to find the so-

lution of (24). Fig[2 presents the identification of the mlode = S S S S S S

(39) for 150 different realizations and 100 iterations of th cor R “‘}ter;"timf" LR

EM algorithm. The shaded area in each figure represents the

upper and lower bounds over the 150 different realization§19- 3: True and estimate parametéfs, Z and M, versus

The initialization of¢ is chosen randomly and uniformly, but the EM iterations.

such that each entry laid in an interval equaldt¥ of the

corresponding entry in the true parameter vector. We have se

w; ~ N(0,diag0.06°,0.06°]), v, ~ N(0,diag0.6°,0.6°])  parameters’(lz) and f(I3). However, it is possible to verify

and x; ~ MN(0,diag0.06°]). Fig.[3 and# present one of in Fig.[4a that the estimated piecewise function can describ

those 150 realizations presented in the Eig. 2. The[Eiy. 4&€ true piecewise function. In that case the estimatecesalu

shows the true piecewise function, the initial guess, aed thvere f(l2) = 0.02001 and f(I3) = 0.1503, equivalent to

last estimate. In Fig_3b is presented the estimated value @ error between the true value and the estimated value of,

the piecewise function calculated at each boundary of tHespectively0.33 and0.19.

function, i.e., f(l;), versus the EM algorithm iteration. In

Fig. 3, the estimated values of the paramet8fsZ., and

M, versus the EM algorithm iteration are given. We have proposed a method based on the EM algorithm
We notice that there is a bias in the final value of thdor identification of PWASS models. We use the direct

V. CONCLUSION
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Fig. 4: Fig.[4& : True, initial guess and final estimate of tiec@wise function. Fid_4b: True and estimated valueg &f)
versus the EM iterations.

but noisy measure of the nonlinear state to calculate th&] M. Petreczky, L. Bako, and J. H. van Schuppen, “Ideriifity of
probability for a given region for each time. The proposed
EM algorithm was applied to the identification of the JAS 39
Gripen'’s flight dynamic in the longitudinal direction. Inish
example, a piecewise affine function with four regions wag-1]
successfully identified as well as the remaining parameters
of the state matrix. The results have shown that the propospad]
method can be used to identify PWASS models.
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