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Abstract— This paper considers the design and implementa-
tion of a discrete-time fast tracking controller for quadrotor
vehicles subject to perturbations. The proposed controller
consists of a model-based disturbance observer and a Composite
Nonlinear Feedback (CNF) controller. The CNF control law
introduces nonlinear damping to the system so that it possesses
a fast rise time without overshoot. The least square identifica-
tion method is applied to develop a model based disturbance
observer, thus decoupling the problems of track following and
disturbance rejection. Experimental results are provided in
order to validate the proposed approach.

I. INTRODUCTION

From environmental surveys [1], [2] and pollution moni-
toring [3], to agriculture and meteorological data acquisition
[4], [5], Unmanned Aerial Vehicles (UAVs) have presented
themselves as a promising technology with the potential to
significantly contribute to several interdisciplinary applica-
tions. Naturally, there are many other applications that may
benefit from UAVs, among which the monitoring of power
lines [6], wireless network integration [7], tridimensional real
time mapping [8] and surveillance systems [9] are already
being explored. While the number of potential applications
to UAVs is already significant, it is certainly growing by the
day.

Among the commonly employed UAVs, the so-called
quadrotor has gained particularly attention due to its ver-
satility and simple construction. This vehicle comprises four
independent rotating blades that allow the system to take
off and land vertically, which makes it more attractive than
fixed wing UAVs for a number of different applications [10].
These and many other benefits inherent to quadrotors gave
rise to several of the so called flying arenas, such as the
ones at Stanford [11], MIT [12] and the Institute of Dynamic
Systems & Control (IDSC), at Zurique [13].

While numerical advanced methods for the control of these
vehicles are being implemented – such as Nonlinear Model
Predictive Control (NMPC) [14] – computationally efficient
solutions encompassing advanced controllers are still rare
in the literature. This is no surprise given the difficulty of
controlling these systems, since they are nonlinear, multi-
variable and underactuated. However, the quadrotor control
problem may be significantly simplified when hierarchically
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divided. Normally, the tasks of altitude and angular position
are considered in separate and individually controlled by
independent PID controllers [10]. Needless to say, the PID
strategy is a logical first choice for the control of these
vehicles due to the simplicity and satisfactory performance
it achieves. However, there are many advanced nonlinear
techniques that could replace the classic PID controller and
provide a significant better performance to the UAV control.

The main objective of this paper is the design and imple-
mentation of a computationally efficient high performance
controller for fast tracking quadrotor vehicles. Given this
scenario, the Composite Nonlinear Feedback (CNF) [15]
controller, also known as dynamic damping control [16], will
be adapted from its original form [17] and implemented to
the system at hand. As shown in [15] this technique is able to
achieve a performance similar to that given by time-optimal
controllers, without suffering from the effects of chattering.

This paper is organized in the following manner: Section II
presents the problem definition and the system identification;
a disturbance rejection strategy is presented in section Sec-
tion III followed by the proposed nonlienar control described
in Section IV; experimental results are shown in Section V
and concluding remarks are given in Section VI.

II. PRELIMINARIES

A. Problem Definition

The quadrotor vehicle considered in this paper is modeled
by four dynamic equations given by,

θ̈ = Iθ(v1 − v3)− bθθ̇ + fθ,

φ̈ = Iφ(v4 − v2)− bφφ̇+ fφ,

ψ̈ = Iψ(v1 + v3 − v2 − v4)− bψψ̇ + fψ,
z̈ = 1

M
(v1 + v2 + v3 + v4)− bz ż + fz,

(1)

where, θ and φ describe the roll and pitch angles, and
ψ and z represent yaw and height, respectively. Variables
vi, i = 1...4 are the upward facing forces generated by
each motor-blade pair andIθ,φ,ψ,z are constructive constants.
Furthermore,bθ,φ,ψ,z are the kinetic friction constants,M
is the mass of the vehicle andfθ,φ,ψ,z represent external
disturbance forces along with unmodeled coupling dynamics.
These equations allow the separation of the different control
tasks such that each motor control law is given as follows:

v1(t) = vz(t) + vθ(t) + vψ(t),
v2(t) = vz(t)− vφ(t)− vψ(t),
v3(t) = vz(t)− vθ(t) + vψ(t),
v4(t) = vz(t) + vφ(t)− vψ(t),

(2)
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Fig. 1: Experimental data collected for system Identification
(ID). Top plot: measured angular velocitẏy(k) and its
equivalent̂ẏ(k) estimated from the identified model. Bottom
plot: input applied during system ID.

wherevz(t) andvψ(t) are respectively the altitude and yaw
command signals of the vehicle, andvθ and vφ are the
respective roll and pitch commands.

The problem to be considered in this paper is the control of
θ andφ angles so that a fast tracking performance is achieved
while minimizing the disturbance signalsfθ,φ. We assume
that the vehicle has a symmetric structure, i.e.,Iθ = Iφ = I
and bθ = bφ = b, so that the same control strategy may be
applied to each axis. From (1), it is straightforward to see
that both,

θ̈ + bθ̇ = I(v1 − v3) + fθ
φ̈+ bφ̇ = I(v4 − v2) + fφ

(3)

may be described by the equivalent transfer function,

Y (s)

V (s)
=

I

s(s+ b)
(4)

whereY (s) is the angle being controlled (eitherθ of φ) and
V (s) is the torque applied to the vehicle (respectively, either
v1−v3 or v4−v2). Furthermore, a first order system is used
to describe the dynamics between the control signalU(s)
sent to the drivers, to the actual torqueV (s) generated by
the rotor blades, giving rise to the following dynamics,

V (s)

U(s)
=

kv
(s+ bv)

, (5)

wherekv and bv must be identified. Thus, the input-output
relation is given by (4) and (5), resulting in the third order
transfer function:

G(s) =
Y (s)

U(s)
=

I · kv
s(s+ b)(s+ bv)

, (6)

which relates the input signalU(s) to the angleY (s).

B. Experimental Setup

The vehicle comprises a 450mm aluminum structure with
10×4.5in blades. A 2200 A/h 3S lypo battery feeds the 30 A
ESCs and the 935 rpm/V motors. The control system runs in
a 32 bit ARM Cortex M0 from STmicro running at 48 MHz
with 128 KByte flash memory. The system is instrumented
with an LSM303DLHC three axis accelerometer and an
L3GD20 three axis gyroscope that communicate with the
Cortex M0 via I2C protocol.

Since the scope of this paper is limited to the control of
the the roll (or pitch) angle of the vehicle, a one degree of
freedom experimental setup was developed, i.e., two ends of
the quadrotor were fixed so that it could only rotate around
the θ (or φ) axis. All the plots shown in this paper were
experimentally obtained unless explicitly stated otherwise.

C. System Identification

The integrator included in model (6) describes the relation
between the angular velocitẏy, directly measured by a gy-
roscope, and the angular positiony, estimated from a three-
axis accelerometer. Since commercially available gyroscopic
sensors usually possess a considerable better signal-to-noise
ratio when compared to accelerometers, the former were
the sensors of choice while performing system identification
experiments on the system. Therefore, the model to be
identified is a second order transfer function relating the
input signal to the gyroscope sensor, whose discrete-time
transfer function may be readily computed by a discretization
method, e.g., Euler Forward,

Ĝẏ(z) =
b0

z2 + za1 + a0
,

whereb0 = IkvT
2, a1 = T (b + bv) and a2 = 1 − T (b +

bv) + bbvT
2.

With a sample time ofT = 5 ms, the data in Fig. 1 was
collected and used for system identification. In that figure,the
top plot shows the angular velocitẏy(k) and its equivalent
ˆ̇y(k) estimated from the identified model. The bottom plot
shows the input sequence – largely based on the work in [18]
– applied during identification. A zero phase Butterworth
filter with a cut-off frequency of 10 Hz (one tenth of the
Nyquist frequency) was used to pre-process the output data1.
The resulting model is given by,

Ĝẏ(z) =
0.0231

z2 − 1.9776z + 0.9778
. (7)

It is possible to infer from the figure that the general
dynamics of the system was captured by the model. This

1This filter was only used in the post-processing of the batch data col-
lected for system identification, and not during the controlimplementation.
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Fig. 2: Discrete time disturbance compensator.

model will be used in the implementation of the disturbance
observer, described in the next section. Naturally, by inte-
grating equation (7) one finds the relation between the input
signal and the angle of the vehicle.

III. D ISTURBANCE OBSERVER

Multirotor vehicles such as the one studied in this work
are subject to several perturbations ranging from wind gusts
to actuators interaction with nearby obstacles, as well as
unmodeled actuator cross coupling and parametric uncer-
tainties. In order to reduce the uncertainty related to these
undesired phenomena, we propose a disturbance observer
that allows the separation between the tracking and distur-
bance rejection tasks. The strategy implemented in this paper
is adapted from [19] and depicted in Fig. 2, whereGẏ(z)
represents the actual system and̂Gẏ(z) the approximate
model of the system as given in (7). Furthermore,Q(z) is
a low pass filter, whose order is greater or equal to that
of Ĝẏ(z). This filter servers two main purposes: besides
making the productQ(z)Ĝ−1

ẏ (z) causal, it provides a way
of limiting the actuation of the disturbance observer to a
desired bandwidthωQ, thus avoiding the amplification of
noise acting on large frequencies.

It is easy to verify that, in the presence of the disturbance
observer and considering that̂Gθ̇(z) ≈ Gθ̇(z) in low
frequencies (belowωQ), the following relation holds,

Ẏ (z)

U(z)
= Ĝẏ(z)[Uθ(z)−D(z)(1−Q(z))] ,

whereD(z) represents theZ-transform of the signald(k). It
is obvious, thus, that by choosingQ(z) as an appropriate low
pass filter, the effects of disturbance are eliminated in low
frequencies. For this particular application a second order
filter was designed such thatωQ = 20 Hz, that is, 20% of
the Nyquist frequency:

Q(z) =
bq0

z2 + zaq1 + aq0
=

9.654× 10−3

z2 − 1.956z + 0.956
. (8)

Note that the only sensor this compensator uses is the
gyroscope because this is a high-gain strategy that requires
a good signal-to-noise ratio (SNR) in order to perform well.
Once again, the gyroscope possesses a better SNR when
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ẏ
(k
)

[r
ad

/s
]

���

Fig. 3: Validating the system identification and the distur-
bance observer. Dashed line: model based simulated out-
put; light gray line: experimental data with the disturbance
observer; dark gray line: experimental data without the
disturbance observer.

-0.1

0.1

0

0 1 32 4

In
pu

t
S

eq
ue

nc
e

Time [kT ]

Fig. 4: Sequence of a “Doublet” input [18] generating the
outputs in Fig. 3.

compared to the accelerometer, hence this sensor alone is
used for the disturbance compensator implementation.

In order to validate the disturbance observer, we have
applied the so-called “Doublet” input sequence [18] – de-
picted in Fig. 4 – both to the open loop system and to the
strategy depicted in Fig. 2. The results are seen in Fig. 3
together with the expected outputˆ̇y(k) given by the model.
Disturbances acting on the system, along with unmodeled
nonlinear phenomena, are compensated up to a frequency
ωQ chosen according to (8).

In the absence of large model errors, disturbance observers
allow independent tuning of disturbance rejection charac-
teristics and reference tracking. Furthermore, they are more
flexible than simple integrators and do not remove 90 degrees
of phase in the resulting closed loop system. Their tuning
is directly based on the bandwidth of the low pass filter
and added degrees of flexibility include theQ filter order
and relative degree. For this and other reasons, disturbance
observers are “particularly helpful in situations where gains
need to be tuned on-line” [19].
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IV. N ONLINEAR CONTROL

Every control law designed for rapid reference tracking
will face the fundamental limitations given by the system
being controlled. The most common of such limitations are
related to actuator saturation and to a limited bandwidth
available for the system [20]. The latter is due to a series
of factors related to the sampling rate, the dynamic limits
of the actuators, the so calledwater bed effect[21], among
others. While some of these limits impose hard constraints on
the system performance, others may be “stretched” through
techniques of nonlinear control. Since the system considered
in this paper is primarily limited by bandwidth limitations
imposed by the sensors, this is the problem dealt with by
the nonlinear control to be applied.

In order to reduce the tracking time of the system without
requiring a larger bandwidth, we propose the implementation
of a nonlinear gain-scheduled PD controller. Its objectiveis
the dynamic allocation of the closed-loop poles as a function
of the tracking error. For large values of the tracking error, it
is desirable that an undamped behavior is given to the system,
so that it possesses a fast rise time. As the system reaches
the reference level, however, a damped behavior is necessary
so that excessive levels of overshoot are avoided. Controllers
that dynamically add damping to the system are referred to as
nonlinear damping[17], or Composite Nonlinear Feedback
[22], and may be implemented in the following form:

u(k) = e(k) · kp − ẏ(k)(kdu + kdd · Γ(e(k))) (9)

wheree := y − r is the tracking error andkdu andkdd are
such thatkdd > kdu > 0.

This controller is tunned by choosing a proportional gain
kp > 0 such that the system achieves the desired bandwidth.
This gain may be computed using the root-locus method
such that the system becomes marginally stable, for instance.
Afterwards, derivative gainskdd and kdu are sought such
the system becomes significantly damped, respectively un-
damped, in a PD type closed loop. With these gains in
hand a smooth functionΓ(e) is used in order to switch the
system behavior – from undamped to damped – as the error
approaches zero. In other words, the switching function is
designed such that:(i) the system presents an undamped
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behavior given bykdu when far from the reference;(ii)
the systems presents a damped behavior given bykdd as
it approaches the reference. The nonlinear functionΓ(e)
is responsible for the dynamic pole placement, since this
function must be close to zero for large values ofe, and
close to one for|e| ≈ 0, a possible choice is given by,

Γ(e) =

(

1− 1

1 + eβ(γ−|e|)

)

. (10)

This function is plotted in Fig. 5 where it is clear that
|e| >> 0 implies Γ(e) = 0, and |e| ≈ 0 implies Γ(e) = 1.
Parametersγ andβ respectively determine the point where
the transition from zero to one happens (Fig. 5), and the
inclination of such transition (Fig. 6). As a result, the closed
loop system will present a fast rise time without overshoot,
improving its dynamic response without increasing the over-
all bandwidth.

The control gains were chosen according to the root locus
method and are given by,kp = 0.1, kdd = 0.1 and kdu =
0.01. The nonlinear function parameters were determined
empirically, and fixed atβ = 35 andγ = π/4.

V. I MPLEMENTATION

In order to implement the control strategy in (9), it is
necessary to use measurements from the output angley = θ
(or y = φ) and its time derivativey = θ̇ (or y = φ̇). Since the
gyroscope directly measures angular velocity, it is ready to
be used in the control law. The accelerometer, on the other
hand, measures linear acceleration and its signal must be
processed in order to provide the output angley. A simple
sensor fusion technique will be described next section in
order to estimate the correct inclination of the vehicle.

A. Complementary Filters

By measuring the linear accelerations of the vehicle it is
possible to infer the forces acting on it. In particular, when
the vehicle is at constant linear speed, the only external force
acting on it is the gravitational one. It is, then, possible to
estimate the vehicle inclination with respect to an earth fixed
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(11)

where ax, ay e az are the linear accelerations at axisx,
y and z as given by the accelerometer. However, when the
vehicle is accelerating in any given direction or when noise
is present in the measurements, these estimates will present
significant errors.

A second approach to estimatey consists in the direct
integration of the gyroscope. Numerically this is performed
in the simple form,

ŷg =
Tz
z−1 ẏ (12)

whereŷg is the estimate ofy (eitherθ or φ) obtained from
the gyroscope (respectively eitherθ̇ or φ̇). However, as usual
with any process of numerical integration, any biased noise
will cause this estimate to drift.

It is, therefore, clear that the estimate of the output angles
from any of these sensors acting alone will cause problems:
while high frequency noise, along with measurements caused
by any acceleration other than gravity, affects the estimate
of ŷa given by the accelerometer alone; low frequency bias
will cause the gyroscope estimatêyg to drift. Ideally, one
would like to use the gyroscope only in high frequencies,
and the accelerometer only in low frequencies. Hence the
idea behind complementary filters, which are defined as any
pair of filters such thatA(z) + B(z) = 1. In this particular
case,

A(z) =
z(1− p)

z − p
, B(z) =

p(z − 1)

z − p
.

That is, filterA(z) is a low pass filter which will be used in
the estimate of̂ya, andB(z) is a high pass filter applied to
ŷg. The filter equation becomes,

Ŷ (z) = A(z)Ŷa(z) +B(z)Ŷg(z), (13)

which, by making use of (12), may be implemented by the
simple equation:

ŷ(k) = p · ŷ(k − 1) + (1− p) · ŷa(k) + pT · ẏ(k), (14)

wherep is a tuning parameter.

B. Experimental Results

In order to validate the proposed approach, the system
was subject to a step-like reference taking it from the origin
ẏ(0) = y(0) = 0 to the y = 1 rad and ẏ = 0. In
order to illustrate the benefits of the proposed approach, four
experiments were performed, as exposed in Figures 7 and 8:

1) the closed loop system using the nonlinear control law
as given in (9) (black line) is presented in both figures;

2) Fig. 7 also shows two linear PD controllers – with
u(k) = kp · e − kd · ẏ(k) as opposed to (9) – for the
undamped case withkd = 0.02, and for the damped
case withkd = 0.09;
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Fig. 7: System response to the different control laws from
the origin to r = 1 rad. Legend: black line - proposed
controller; light grey line - undamped controller; dark grey
line - damped controller.

3) Fig. 8 shows the behavior of a linear PD controller
achieving the same level of overshoot as the nonlinear
controller due to the meticulous choice ofkd = 0.033;

From Fig. 7 it is possible to verify the benefits of the
proposed approach. Note that, as expected, the undamped
closed loop system generates a fast rise time but unaccept-
able oscillatory behavior around the reference, resultingin
a system with poor performance. On the other hand, the
damped closed loop system presents no overshoot at all, but
its dynamic response is too slow. By selecting the best traits
of these linear controllers, the proposed control law is able
to achieve a fast rise time with small levels of overshoot and
oscillation, significantly improving the system performance
when compared to the linear controllers.

In order to explicit the fact that no PD gain combina-
tion is able to achieve a better response, Fig. 8 shows a
comparison between the proposed controller and a linear PD
that was specifically tuned to achieve the same overshoot as
the proposed one. It is clear that a linear controller tuned
for the same overshoot takes over twice as much time to
accommodate as its nonlinear counterpart. This is about the
same time required by the damped PD controller, and the best
performance we were able to achieve with the PD topology.

VI. CONCLUSION

This paper has developed a nonlinear discrete time control
strategy for the fast tracking of quadrotor-like vehicles.In or-
der to aid the system with respect to disturbance rejection and
to reduce the effects of unmodeled dynamics, a disturbance
observer was implemented. Experimental results have shown
that the disturbance observer improves the system behavior
by also eliminating the effects of unmodeled dynamics, thus
generating a better fit between the system and the model.
The proposed nonlinear controller introduced a dynamic
damping term to the closed loop system so that the a
fast rise time response is achieved with limited levels of
overshoot. Experimental results have been presented showing
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that the superiority of the proposed method when compared
to traditional linear methods. A significantly faster tracking
time was achieved.

Our future work will focus on the improvement of the
remaining degrees of freedom of the system. When all con-
trol loops are working simultaneously, it may be important
to consider saturation in the actuators. Different methods
may be investigated, such as the Proximate Time Optimal
Servomechanism [23] and its dynamically damped version
[24].
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