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Abstract— This paper presents a new direct data-driven
control method for the load disturbance problem in a Model
Reference Matching framework. It consists in embedding the
controller’s design under a prediction error approach, where a
flexible reference model is also identified in order to guarantee
the causality and stability of the ideal controller. Due to the
complexity of the proposed approach, a dedicated iterative
optimization algorithm is developed to properly solve the
problem. Finally, the statistical properties of the obtained
estimates are explored through simulation examples, where the
enhancement obtained through the proposed methodology is
compared to least-squares and instrumental variable solutions.

I. INTRODUCTION

In most industrial applications of control systems, pro-
cesses commonly possess coupled variables, in addition to
possible unknown external influences, which can directly
affect and disturb their nominal dynamics. Under this kind of
environment, the disturbance rejection problem may be the
most relevant issue since its occurrence is more frequent and
harmful than a set-point change. Therefore, to obtain better
load disturbance rejection performance, it is not appropriate
to design the controllers employing a method formulated to
reference tracking [1].

The literature on Model Reference Matching control for
load disturbance rejection problem is more scarce and limited
if compared to the reference tracking scenario. Concerning
such problem, model-based approaches were presented at
[2], [3], [4]. Moreover, in recent years, this problem has
attained the attention of the data-driven control community,
where efforts were made to conceive new methods aiming
to enhance the performance of load disturbance attenuation.
In [5], an approach based on the Virtual Reference Feedback
Tuning (VRFT) method for continuous-time signals was
presented to tune PID controllers. Also, in [6], [7], two and
three degrees of freedom controllers are designed using an
adaptation of the VRFT approach as well, but where it is
necessary to measure the disturbance signal itself, which can
be a challenging condition.

Eventually, an approach called Virtual Disturbance Feed-
back Tuning (VDFT), analogous to the VRFT solution, was
developed in [1] to deal with data-driven load disturbance
rejection. The great advantage of VDFT compared to its
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predecessors is that it allows the design of a wider set of
controller’s structure, and it does not need the measure of
the disturbance signal specifically. Additionally, some novel
contributions are arising in data-driven control literature to
improve these methodologies. As an example, in [8], the
choice of the load disturbance reference model was addressed
for the specific scenario of data-driven control. Also, in
[9] the VDFT was employed to tune regulatory controllers
under a hierarchical model predictive control architecture,
and in [10] the same method was extended to a correlation-
based approach, focusing on the enhancement of its statistical
properties.

Considering the load disturbance rejection problem in
the data-driven control scenario, this work presents a new
formulation of a design method for such context, extending
the work of the VDFT, but embedding the problem on a
prediction error approach. This solution is analogous to the
one presented on [11] for the reference tracking problem
(known as OCI), but with some evident new challenges,
such as the solution of the optimization problem, which
is evidently more complicated due to the structure and the
dependence of the predictor on the controller’s parameters.
Because of this resemblance, the method proposed in this
paper is named the Optimal Controller Identification for
Disturbance rejection, or OCI-D.

II. SYSTEM PRELIMINARIES

Consider a linear time-invariant discrete-time single-input
single-output process, described as [12]:

y(t) = G0(q)u(t) +H0(q)w(t), (1)

where q is the forward-shift operator, G0(q) represents
the process’ transfer function, H0(q) is the noise transfer
function, w(t) is zero mean white noise, and u(t) is the
system’s input signal, composed by two terms [1]:

u(t) = uc(t) + d(t), (2)

where d(t) is the load disturbance signal and uc(t) is the
control signal, that can be manipulated by the user through
a feedback controller:

uc(t, ρ) = C(q, ρ) (r(t)− y(t)) , (3)

where r(t) is an external reference signal, and C(q, ρ) rep-
resents the controller transfer function. Here, the controller
is parametrized by a parameter vector, namely ρ ∈ Rn such
as ρ = [ρ1 ρ2 . . . ρn], and it belongs to a predefined and
fixed controller class, defined as

C ,
{
C(q, ρ) : ρ ∈ P ⊆ Rn

}
. (4)
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Fig. 1. Closed-loop system’s block diagram.

The closed-loop system is presented in Fig. 1. Both
reference and disturbance signals are considered to be quasi-
stationary processes [12] uncorrelated with the output noise:

Ē
[
r(t)w(t)

]
= 0, Ē

[
d(t)w(t)

]
= 0, (5)

where the operator Ē[·] is defined as [12]:

Ē[x(t)] , lim
N→∞

1

N

N∑
t=1

E[x(t)]. (6)

Under the closed-loop setup shown in Fig. 1, the system’s
output can be expressed by the following equation:

y(t, ρ) = T (q, ρ)r(t) +Q(q, ρ)d(t) + S(q, ρ)H0(q)w(t),
(7)

with

T (q, ρ) ,
C(q, ρ)G0(q)

1 + C(q, ρ)G0(q)
, (8)

Q(q, ρ) ,
G0(q)

1 + C(q, ρ)G0(q)
, (9)

S(q, ρ) ,
1

1 + C(q, ρ)G0(q)
. (10)

The problem addressed on this work is to tune the controller
in order to optimize the performance on load disturbance
rejection trough a data-driven approach, i.e. using only
batches of input and output data, without the need of a
mathematical process’ model.

The performance is specified using a reference model
Qd(q) which describes the desired output to some distur-
bance signal. Then, an optimization problem is formulated
to minimize the difference between Q(q, ρ) and Qd(q):

ρmd = arg min
ρ

Jmd(ρ), (11)

Jmd(ρ) , Ē
[
Qd(q)d(t)−Q(q, ρ)d(t)

]2
. (12)

The ideal controller, i.e., the one that leads the closed-loop
system to behave exactly as defined by the reference model
Qd(q), is given by [2], [1]:

Cd(q) ,
G0(q)−Qd(q)
G0(q)Qd(q)

, (13)

Cd(q) ∈ C → ∃ρd : C(q, ρd) = Cd(q).
When the ideal controller does not belong to the controller

class C, the controller C(q, ρmd) is different than Cd(q), but
it is the best controller that can be achieved to reach, as close
as it can, the desired load disturbance performance [1].

III. APPROPRIATE CHOICE OF THE REFERENCE MODEL

Since Cd(q) depends on G0(q) and Qd(q), the latter
should be chosen wisely by the user in order to result in a
well-formulated problem, where Cd(q) is stable and causal.
Indeed, the choice of the reference model Qd(q) was already
addressed in the literature, where [2], [3] proposed a model-
based solution and [8] presented a solution for the data-
driven scenario, introducing some guidelines for the design
of Qd(q) using a flexible structure. Observe that

Cd(q) =
dQd(q)nG0(q)− nQd(q)dG0(q)

nG0(q)nQd(q)
, (14)

where nF (q) denotes the numerator of the transfer function
F (q) and dF (q) its denominator. This expression is useful
to choose the reference model since it describes how Qd(q)
affects the stability and causality of the ideal controller
Cd(q). The following Theorems, based on (14), describe the
stability and causality of the ideal controller Cd(q).

Theorem 1 (Causality of Cd(q)): The controller Cd(q)
will be proper if and only if [2]:

Dg
[
dQd(q)nG0(q)− dG0(q)nQd(q)

]
≤ Dg

[
nQd(q)nG0(q)

]
,

Γ[G0(q)] = Γ
[
Qd(q)

]
where Dg[F (q)] denotes the degree of the polynomial and
Γ[F (q)] denotes the relative degree of F (q).

Theorem 2 (Stability of Cd(q)): The controller Cd(q)
will be stable if and only if there exists f(q) and g(q) such
that [2]:
• nQd(q) = f(q)nG+

0 (q);
• dQd(q)nG

−(q) = dG0(q)f(q) + g(q)nG+
0 (q),

with

Dg
[
f(q)

]
= Dg

[
dQd(q)

]
+Dg

[
nG−0 (q)

]
−Dg

[
dG0(q)

]
Dg
[
g(q)

]
= Dg

[
dQd(q)

]
+ 2Dg

[
nG−0 (q)

]
−Dg

[
dG0(q)

]
where nG−0 (q) and nG+

0 (q) represent the minimum phase
and non-minimum phase factors of nG0(q), respectively.

From Theorems 1 and 2 it is clear that the choice of
the numerator of Qd(q) is critical to ensure the causality
and stability of Cd(q), and it is highly dependent on G0(q),
which is unknown in a data-driven control design. Then, to
accomplish such conditions without using a process model,
the alternative proposed in [8] is to use a flexible structure
for the reference model as Qd(q, η) = F̄ (q)T η, where
η =

[
η1 η2 . . . ηm

]T ∈ Rm and F̄ (q) is an m-vector of
rational transfer functions, which also belongs to a predefined
and fixed class:

Q ,
{
Q(q, η) : η ∈M ⊆ Rm

}
. (15)

With this choice, a partition of Q(q, η) is let free to be
identified together with the controller parameters.

Finally, the choice of the data-driven structure for Q(q, η)
can be accomplished by the user from the guidelines pro-
vided in [8] as follows:
• Observe the number of non-minimum phase zeros in
G0(q), denoted by Dg

[
nG+

0 (q)
]
;

• Observe the relative degree of G0(q), i.e., Γ
[
G0(q)

]
;
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• Choose l fixed zeros to include in nQd(q, η). Ex: to
reject step disturbance signals, a zero should be fixed
at 1, and so, l = 1;

• Determine the order of Qd(q, η) :

Dg
[
dQd(q, η)

]
=

2
{

Γ
[
G0(q)

]
+Dg

[
nG+

0 (q)
]}

+ l − 1;
(16)

• Design the poles in F̄ (q) according to the desired
dynamics, e.g. desired settling time;

• Determine the number of free parameters in nQd(q, η):

m = Dg
[
dQd(q, η)

]
− l − Γ

[
G0(q)

]
+ 1. (17)

These guidelines are based in some trivial quantities from
G0(q), such as its relative degree and quantity of non-
minimum phase zeros. Due to the data-driven approach, this
knowledge of the process is not directly available from a
model. However, all those quantities can be reached from
an analysis of the collected data like the evaluation of the
process’ delay and the presence of an inverse response. Thus,
the appropriate choice of the reference model also remains
on a data-driven approach.

IV. THE VDFT FLEXIBLE SOLUTION

VDFT is a data-driven control method inspired on the vir-
tual reference approach [13] to optimize the load disturbance
rejection [1]. In order to identify both the controller and the
reference model, the VDFT solution is rewritten in [8] as the
minimization of:

Jvd(ρ, η) =

Ē
{
K(q)

[
Qd(q, η)

(
u(t) + C(q, ρ)y(t)

)
− y(t)

]}2
,

(18)

where K(q) is an additional filter used to approximate both
Jvd(ρ, η) and Jmd(ρ, η), where Jmd(ρ, η) is equivalent to
(12), but considering a flexible reference model Qd(q, η) [8].
If the controller has a linear parametrization as C(q, ρ) =
β̄(q)T ρ, with β̄(q) being an n-vector of rational transfer
functions, then the solution of the optimization problem
described in (18) is given iteratively for ρ and η for each
iteration i, starting with an initial controller C(q, ρ0) [8],
with the sequential least squares algorithm:

η̂ils =

[
1

N

N∑
t=1

ϕq(t)ϕq(t)
T

]−1 [
1

N

N∑
t=1

ϕq(t)y(t)T

]
(19)

ρ̂ils =

[
1

N

N∑
t=1

ϕc(t)ϕc(t)
T

]−1 [
1

N

N∑
t=1

ϕc(t)z(t)
T

]
,

(20)

where

ϕq(t) = K(q)F̄ (q)
(
u(t) + β̄(q)T ρi−1ls y(t)

)
, (21)

ϕc(t) = K(q)β̄(q)
(
F̄ (q)T ηilsy(t)

)
, (22)

z(t) = K(q)
[
y(t)− F̄ (q)T ηilsu(t)

]
, (23)

that is guaranteed to converge to a local minimum at least
[14], [12]. The formulation of VDFT is based on noise-free
signals. When signals are corrupted with noise, the estimates
are not consistent and an instrumental variable should be
used to cope with this problem. However, it is well known
that this approach results in estimates with large variance. In
the reference tracking problem, the OCI method stands as an
alternative to the VRFT approach to improve these properties
through a prediction error approach.

Inspired by the OCI solution for reference tracking, this
work proposes a new approach for the load disturbance
problem. Based on the prediction error identification, the
OCI-D stands as a data-driven method that aims to improve
the statistical properties of the data-driven controller design
for load disturbance rejection when compared to the VDFT.

V. PREDICTION ERROR CONTROL DESIGN FOR LOAD
DISTURBANCE REJECTION

The OCI method can be seen as the identification of the
ideal controller through the prediction error approach [11].
The idea is to rewrite system’s equation (1) substituting
G0(q) by its relation with the ideal controller and the refer-
ence model. Since the reference model is usually fixed, when
the identification is performed, a parameterized controller is
identified. The same reasoning is applied here for disturbance
rejection, with the difference that part of the reference model
has also to be identified.

Consider we want to identify the ideal controller for load
disturbance rejection. From (13) we can isolate G0(q) as

G0(q) =
Qd(q)

1− Cd(q)Qd(q)
. (24)

Rewriting (1), a model can be obtained as a function of
the controller and the reference model parameters:

y(t, ξ) =
Qd(q, η)

1− C(q, ρ)Qd(q, η)
u(t) +H(q, θ)w(t), (25)

with ξ =
[
ρT ηT θT

]T
, where ρ ∈ Rn are the controller

parameters, η ∈ Rm are the reference model parameters and
θ ∈ Rt are additional noise model parameters.

Using a batch of data collected from either
an open or closed-loop experiment, with ZN =
[u(1) y(1) . . . u(N) y(N)], it is possible to estimate
ξ by minimizing the prediction error loss function:

ξ̂ = arg min
ξ

Jocid(ξ),

Jocid(ξ) =

N∑
t=1

(
y(t)− ŷ(t, ξ)

)2
, (26)

where ŷ(t, ξ) is the optimal one-step-ahead predictor [12]:

ŷ(t, ξ) =
1

H(q, θ)

Qd(q, η)

1− Cd(q, ρ)Qd(q, η)
u(t)+[
1−H(q, θ)−1

]
y(t).
(27)
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When the reference model’s and the controller’s classes
(Q and C) are chosen so the Model Reference Matching is
possible, it can be said that the following assumption holds:

Assumption 1 (Flexible Model Matching Condition):
There exists a pair

(
ρd, ηd

)
such that:

∃ ρd, ηd : C(q, ρd) =
G0(q)−Qd(q, ηd)
G0(q)Qd(q, ηd)

. (28)

If Assumption 1 is satisfied, the problem of the identifica-
tion of C(q, ρ) and Qd(q, η) by minimizing Jocid(ξ) results
in the same problem as the minimization of Jmd(ρ, η).

The main difference of this work, compared to the original
OCI method for reference tracking, is that the complexity
of the optimization problem is considerably higher, due
to the dependence of the predictor on the controller’s and
reference model’s parameters, which does not allow the use
of standard structures and identification softwares. Thus, a
specific algorithm is developed to identify ρ and η.

This algorithm is sliced into two optimization steps. The
first one is a gradient descent method with starting point
obtained from the parameters identified by VDFT. Through
that, new parameters are estimated iteratively by

ξ̂i+1 = ξ̂i − γ∇Jocid(ξ̂i), (29)

where γ is a dynamic step that increases or decreases 1% of
its value on each round of the algorithm if the cost function
decreases or increases, respectively, and ∇Jocid(ξ̂i) is the
cost function gradient. The second optimization step is a
Newton’s method that goes on from the parameters estimated
in the gradient descent method. In this case, new parameters
are estimated iteratively by

ξ̂i+1 = ξ̂i −H−1Jocid(ξ̂i)∇Jocid(ξ̂i), (30)

where HJocid(ξ̂i) is an approximation of the Hessian matrix
given by [12]:

HJocid(ξ̂i) =
1

N

N∑
t=1

∇Jocid(t, ξ̂i)∇JTocid(t, ξ̂i). (31)

Despite the computational complexity to solve the optimiza-
tion problem, the main advantage of the OCI-D method is
that all the theoretical and favorable properties of prediction
error applies for the identification of C(q, ρ) and Qd(q, η).
Therefore, it is possible to obtain unbiased estimates with
lower variance errors when Assumption 1 is satisfied [14],
[12], if compared to least-squares or instrumental variable
solutions, as the ones used by VDFT.

VI. NUMERICAL EXAMPLES

To exploit the statistical properties of OCI-D, two numer-
ical examples are performed comparing the results achieved
by VDFT and the instrumental variable approach against the
prediction error strategy when the batch of data is affected
by noise. The performances are rated through two examples,
being the first one the case when the Flexible Matching
Condition is satisfied and the second one the case when it
does not.

A. Matched case

Consider an LTI process that can be described as a
first order transfer function running in closed loop with a
proportional-integral controller:

G(q) =
0.5

q − 0.9
C(q) =

0.2q − 0.14

q − 1
. (32)

A reference model for disturbance rejection is specified
following the guidelines presented in Section III. Since
the plant is minimum-phase, Deg[nG+(q)] = 0. Being
Γ[G(q)] = 1 and addressing the controller design to reject
a step disturbance, which implies in l = 1, the denominator
order of Qd(q, η) given by (16) is set to Deg[dQd(q, η)] = 2.
Finally, (17) sets that the number of free parameters in the
numerator of the reference model should be m = 1.

Setting the poles’ position as pi = 0.8 to achieve a faster
disturbance rejection compared to the system response and
tuning a PI controller, the structures of the reference model
and the controller are given by:

Qd(q, η) =
η0(q − 1)

(q − 0.8)2
C(q, ρ) =

ρ0q + ρ1
q − 1

(33)

For this case, the ideal controller specified by (13) using the
reference model (33) results in a transfer function like:

C(q, ρd) =
a0q

2 + a1q + a2
q − 1

, (34)

where a0 = (0.5 − η0). Hence, η0 = 0.5 must hold to
guarantee that the ideal controller is causal and belongs to
the predefined PI controller class.

With this set, a Monte Carlo experiment of 1000 iterations
is evaluated to identify the parameters of the controller
and the reference model, looking into the performances of
VDFT, VDFT with instrumental variables (VDFT-IV) and
OCI-D. On each round, a batch of data is collected from
the closed loop noisy system with a signal-to-noise ratio of
7dB when a step load disturbance is applied at the process
input to controller design through VDFT and OCI-D. The
instrumental variable for VDFT-IV is obtained from another
experiment, equal to the first one. Each batch of data with
100 samples is then used by VDFT to estimate the initial
parameters, being the average results as:

Cvdft(q, ρ̂) =
0.39q − 0.32

q − 1
Qdvdft(q, η̂) =

0.65(q − 1)

(q − 0.8)2

Those parameters are a good starting point for OCI-D,
and alongside with the batch of data it allows to run the
optimization method. After running OCI-D, a new set of
parameters is estimated for the controller and the reference
model, being the average results equal to:

Cocid(q, ρ̂) =
0.60q − 0.52

q − 1
Qd(q, η̂) =

0.51(q − 1)

(q − 0.8)2

The step response of every closed-loop system identified
on this simulation is presented in Fig. 2, where the perfor-
mances of VDFT, VDFT-IV and OCI-D are compared to
the noiseless and to the initial responses. It is visible that
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VDFT is biased, since the mean controller and reference
model pair is not the ideal values. The IV solution adopted
with VDFT is unbiased, but the variance is high and finally
OCI-D results are unbiased and show lower variance. The
noiseless response presented in graphs is also the response
of (33) with η0 = 0.5.

Fig. 2. Step responses of the Monte Carlo simulation with VDFT, VDFT-IV
and OCI-D for the matched case.

A further analysis is performed from the box-plots pre-
sented in Fig. 3, where the statistics of the three methods
are set side by side in an evaluation of the error to the noise
free response, which can be written as a cost function like

Jn(ρ, η) =
∑(

yn(t)− ŷ(t, ρ, η)
)2
, (35)

being yn(t) the closed loop response achieved with a noise-
less batch of data. Again, it is noticeable that OCI-D achieves
the best results, showing lower median and variance than
VDFT and VDFT-IV.

VDFT VDFT-IV OCID

0

0.5

1

1.5

2

2.5

3

Fig. 3. Error to noise free response box plot comparison between VDFT,
VDFT-IV and OCI-D for the matched case.

This is also supported by Table I, where the mean (x) of
the identified parameters are shown alongside with the stan-
dard deviation (σ) values inside parenthesis. It is important to
notice that all methods have the same noise free output, since
in this case the estimated parameters match the condition
of the ideal controller. Being Tr(.) the trace operator, an

evaluation of the covariance matrix of the parameters vector
results in Tr(VDFT)=0.02, Tr(VDFT-IV)=0.09 and Tr(OCI-
D)=0.01. Through all those perspectives, OCI-D stands with
the best results, endorsing the expected behavior due to the
prediction error approach.

TABLE I
PARAMETERS VECTORS STATISTICS x(σ) FOR THE MATCHED CASE.

Noise free VDFT VDFT-IV OCI-D
ρ0 0.60 0.39 (0.09) 0.63 (0.20) 0.60 (0.09)
ρ1 -0.52 -0.33 (0.08) -0.54 (0.19) -0.52 (0.08)
η0 0.50 0.65 (0.09) 0.51 (0.10) 0.51 (0.05)

B. Mismatched case

Consider now an LTI process described as a second order
transfer function running in closed loop with a PI controller
designed for reference tracking as:

G(q) =
0.1

(q − 0.7)(q − 0.9)
C(q) =

0.3q − 0.24

q − 1
(36)

Once more, the guidelines presented in Section III are
followed to specify the reference model structure. Since
there are no non-minimum phase zeros, Deg[nG+(q)] = 0.
Being Γ[G(q)] = 2 and addressing the controller design to
reject a step disturbance, or l = 1, the denominator order of
Qd(q, η) given by (16) is set to Deg[dQd(q, η)] = 4. In its
turn, the number of free parameters in the numerator of the
reference model given by (17) sets m = 2. Finally, setting
the poles position as pi = 0.6 to achieve a faster disturbance
rejection compared to the system response and tuning again
a PI controller, the structures of the reference model and the
controller class are given by:

Qd(q, η) =
(η0q + η1)(q − 1)

(q − 0.6)4
C(q, ρ) =

ρ0q + ρ1
q − 1

(37)

For this case, the ideal controller specified by (13) results in
a transfer function like:

C(q, ρd) =
a0q

2 + a1q + a2
q2 + b1q + b2

, (38)

so the ideal controller clearly does not belong to the prede-
fined controller class of the PI controller.

Likewise the previous example, a Monte Carlo experiment
of 1000 iterations is evaluated to explore the performances of
all three methods. On each round, a batch of data is collected
from the closed loop noisy system with a signal-to-noise
ratio of 10dB when a step load disturbance is applied at the
process input. This batch of data with 100 samples is then
used by VDFT to estimate the initial parameters, being the
average results as follow:

Cvdft(q, ρ̂) =
0.63q − 0.56

q − 1
Qdvdft(q, η̂) =

(0.03q + 0.08)(q − 1)

(q − 0.6)2

Using those parameters as starting point alongside with
the batch of data to run OCI-D, a new set of parameters is
estimated for the controller and the reference model, being
the average results equal to:

Cocid(q, ρ̂) =
0.59q − 0.52

q − 1
Qdocid(q, η̂) =

(0.03q + 0.09)(q − 1)

(q − 0.6)2
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The step disturbance response of every closed-loop system
on this simulation are presented in Fig. 4, where the perfor-
mances of VDFT, VDFT-IV and OCI-D are compared to the
noiseless and to the initial responses. Again, it is possible to
notice that the OCI-D results show a closer behavior to the
noiseless response and lower variance.

Fig. 4. Step responses of the Monte Carlo simulation with VDFT, VDFT-IV
and OCI-D for the mismatched case.

Looking at Fig. 5, where the statistics of the three methods
are set side by side in an evaluation of the error to the noise
free response defined by (35), we see that OCI-D achieves
the best results one more time, showing the lowest median
and variance compared to VDFT and VDFT-IV.

VDFT VDFT-IV OCID

0

0.5

1

1.5

Fig. 5. Error to noise free response box plot comparison between VDFT,
VDFT-IV and OCI-D for the mismatched case.

Table II presents the statistics of the identified parameters
for the mismatched case, and finally, the evaluation of
the covariance matrix of the parameters’ vector results in
Tr(VDFT)=0.02, Tr(VDFT-IV)=0.13 and Tr(OCI-D)=0.01.
Likewise in the matched case, OCI-D stands with the best
results and statistical properties.

VII. CONCLUDING REMARKS

This work introduced a novel methodology to data-driven
control design for load disturbance rejection. The controller
identification was formulated in a prediction error approach,

TABLE II
PARAMETERS VECTORS STATISTICS x(σ) FOR THE MISMATCHED CASE.

VDFT VDFT-IV OCI-D
ρ0 0.63 (0.08) 0.71 (0.25) 0.59 (0.05)
ρ1 -0.56 (0.07) -0.63 (0.22) -0.52 (0.04)
η0 0.03 (0.05) 0.05 (0.07) 0.03 (0.04)
η1 0.08 (0.06) 0.06 (0.09) 0.09 (0.05)

using the data-driven solution for the flexible choice of
the reference model, and identifying some of its parame-
ters alongside the controller. Also, the paper discussed the
complexity of the resulting optimization problem, which is
rather more complex than other currently available method-
ologies.The method’s statistical properties were also explored
under some specific conditions and numerical examples ex-
hibited the comparison between VDFT, VDFT-IV and OCI-
D, showing that the the proposed methodology outperforms
both least squares and instrumental variable solutions when
data is corrupted with noise.
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