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Abstract— Iterative Feedback Tuning (IFT) is a data-driven
method used to tune parameters of feedback controllers minimi-
sing an H2 criterion. The method uses data from experiments to
estimate the gradient of the criterion, and uses iterative quasi-
newton algorithms to adjust the controllers. When the method
is used in cascade systems, usually the inner loop is firstly
adjusted, and after the outer loop. In this article we describe
an extension to the IFT method that adjusts both inner and
outer loop at the same time using only data from closed-loop
experiments at each iteration.

I. INTRODUCTION

Iterative Feedback Tuning (IFT) has been first proposed

roughly two decades ago [1] and is now a well established

design methodology [2], [3]. IFT has pioneered the Data-

Driven approach (DD, also called Data-Based) for control

design, which has become an important paradigm with sound

design methodologies [4]–[8]. The most general formulation

of IFT is valid for the so-called two-degree-of-freedom

controller structure - a controller in the loop plus a set-

point filter - and requires, at each iteration, the realisation

of three experiments to guarantee statistical convergence to

the optimal controller.

Cascade control is a very common control configuration

(see, for instance, [9]) that is not explicitly encompassed

by the IFT formulation. Cascade controllers consist of an

outer (main) control loop, and an inner (secondary) control

loop. The secondary loop controls an intermediate variable,

with the output of the main controller as its set-point. IFT

could, in principle, be applied to tune cascade controllers by

adjusting each controller separately, but there are at least two

major inconveniences in doing so. First, this would demand

twice as many experiments at each iteration, since there are

two controllers to be tuned independently. Second, it would

require the choice of a reference model for the secondary

loop. In conventional practice the secondary loop is designed

to be as fast as possible, in an attempt to make its dynamics

negligible with respect to the dynamics of the main loop.

This idea could be applied to conceive a reference model

for the secondary loop. However, as we will show by means

of an example, this does not usually yield the best result in

terms of the performance of the main loop - which is the

sole objective of the cascade control.
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In this paper we develop an extension of the IFT formula-

tion that applies to the cascade control structure, allowing

the simultaneous tuning of both controllers. In this new

formulation, no extra experiments are required and there

is no need to define a reference model for the inner loop.

The paper is organised as follows. Section II presents the

classical Iterative Feedback Tuning for non-cascade systems.

In Section III the cascade feedback system is described. The

proposed methodology to apply Iterative Feedback Tuning

for cascade systems is presented in Section IV. Numerical

examples are given in Section V and final conclusions in

Section VI.

II. ITERATIVE FEEDBACK TUNING

Consider a linear time-invariant discrete-time single-input-

single-output process

y(t) = G(q)u(t) + v(t) = G(q)u(t) +H(q)e(t), (1)

where q is the forward-shift operator, G(q) is the process

transfer function, u(t) is the control input, H(q) is the noise

model, and e(t) is zero mean white noise with variance σ2
e .

Both transfer functions, G(q) and H(q), are rational and

causal.

The system is in feedback control where control action

u(t) can be written as

u(t) = C(q, ρ)(r(t) − y(t)), (2)

where C(q, ρ) is the transfer function of the controller which

is parameterized by ρ ∈ Rn.

The system (1)-(2) in closed loop becomes

y(t, ρ) = T (q)r(t) + S(q)v(t) (3)

T (q) =
C(q)G(q)

1 + C(q)G(q)
= C(q)G(q)S(q) (4)

where we have made explicit the dependence of the output

on the parameter vector ρ.

We also assume that the model of the process is unavai-

lable to the user such that the transfers functions G(q) and

H(q) are unknown. However, we assume that the user can

collect a batch of data from the process

ZN = [y(1), . . . , y(N)].

The Iterative Feedback Tuning is an iterative method

which solves the following H2 optimisation problem:

min
ρ

J(ρ)

where

J(ρ) =
1

N

N∑

t=1

(yd(t)− y(t, ρ))
2
.



The optimisation criterion J(ρ) is the mean square error

between the output of the closed loop system y(t, ρ) and

the desired output yd(t). The desired output is calculated

using a reference model Td(q):

yd(t) = Td(q)r(t)

where the closed-loop performance is specified by the choice

of the transfer function Td(q). Usually the DC gain of Td(q)
is one, such that the desired closed-loop system presents zero

steady-state error.

The optimisation problem can be solved iteratively by

Quasi-Newton Algorithms

ρi+1 = ρi − γiRi∇J(ρi) (5)

where ρi ∈ Rn is the controller parameters at iteration i,

∇J(ρi) is the gradient of J(ρ) with respect to the parameter

vector ρ, Ri ∈ Rn×n is a matrix which defines (together

with ∇J(ρi)) the direction of the updates and γi ∈ R is

used to tune the step size. When Ri is the identity matrix the

algorithm is called Steepest Descent and the updates are done

in the opposite direction of the gradient of the cost function.

The convergence of this algorithm to a local minimum of

the cost function J(ρ) depends on two factors according to (

[1]–[4], [10]): the use of an unbiased estimate to the gradient

of the cost function and a correct choice for the step size γi.

In this article we will present an unbiased estimate to the

gradient and we recommend the above articles to a deep

understanding of the step size choice.

The method described until here can be classified as an

optimum controller design with H2 criterion. The optimi-

sation can be performed with or without knowledge of the

system models; the objective of Iterative Feedback Tuning

method is optimize the criterion using only input/output data

as information from the process.

So, the method is an algorithm to obtain both the gradient

of the cost function ∇J(ρi) and the matrix Ri from closed-

loop data from the system. Observe that the gradient can be

calculated as

∇J(ρi) =
2

N

N∑

t=1

(yd(t)− y(t, ρ))
∂y

∂ρ

where

∂y

∂ρ
=

T (q, ρ)

C(q, ρ)

∂C(q, ρ)

∂ρ
[r(t) − T (q, ρ)r(t) −S(q, ρ)v(t)] .

Observe that to compute the gradient, the signal ∂y
∂ρ

is needed, which depends on the model process what is

unknown. So the main idea of IFT method is use collected

data from two specific closed loop experiments (in the case of

one degree of freedom controller) to obtain ∂y
∂ρ

and estimate

the gradient of the cost function. The two experiments are

given by:

• First experiment: r1(t) = r(t) and the output signal

y1(t) is collected; the superscript means that the data is

collected in the first experiment.

• Second experiment: r2(t) = r(t)−y1(t) and the output

of this experiment y2(t) is collected.

The method suggest the following estimate for the gradient

of the output with respect to the parameter vector:

∂̂y

∂ρ
=

1

C(q, ρ)

∂C

∂ρ
y2(t)

such that the gradient of the criterion is estimated as

∇̂J(ρi) =
2

N

N∑

t=1

(
yd(t)− y1(t, ρ)

) ∂̂y
∂ρ

.

The reference signal r(t) is assumed to be quasi-stationary

and uncorrelated with the noise, that is Ē [r(t)e(s)] =
0 ∀t, s, and

Ē[f(t)] , lim
N→∞

1

N

N∑

t=1

E[f(t)]

with E[·] denoting expectation [11]. Then it is possible to

show that

E
[
∇̂J(ρi)

]
= ∇J(ρi)

such that the estimate is unbiased.

A common choice for the the matrix Ri is

R̂i =


 2

N

N∑

t=1

∂̂y

∂ρ

T
∂̂y

∂ρ




−1

(6)

which is a biased approximation to the inverse of Hessian of

the criterion J(ρ).

Using the estimates ∇̂J(ρi) and R̂i the user can run the

Quasi-Newton Algorithm (5) and then optimize the criterion

J(ρ). For each iteration of the algorithm, the user should run

two closed loop experiments to collect the data y1(t) and

y2(t). Observe that all the procedure is performed without

the use of the process model.

The method Iterative Feedback Tuning can also be used to

tune two degree of freedom controllers (2DOF) as described

in theIFT. In this case, the estimate of the gradient of

the cost function is obtained using data from three specific

experiments. The first two experiments are exactly the same

as described above, but the method also needs data from

a third experiment with the same reference signal as the

first experiment. In order to obtain unbiased estimates to the

Hessian of the cost function, one should run a fourth specific

experiment, as described in [12].

III. CASCADE SYSTEMS

Let us assume a linear time-invariant discrete-time single-

input-single-output cascade process

y1(t) =G1(q)u1(t) + v1(t) (7)

= G1(q)u1(t) +H1(q)e1(t),

y2(t) =G2(q)u2(t) + v2(t) (8)

= G2(q)u2(t) +H2(q)e2(t),

where G1(q) and G2(q) are the inner and outer process

transfer function respectively, H1(q) and H2(q) are the noise



models, e1(t) and e2(t) are zero mean white noise with

variances σ2
e1 and σ2

e2. All transfer functions are rational and

causal.

The cascade feedback control system is shown in Figure

1. The control action can be written as

u1(t) = C1(q, ρ1)(r1(t)− y1(t)), (9)

r1(t) = C2(q, ρ2)(r2(t)− y2(t)), (10)

where C1(q, ρ1) and C2(q, ρ2) are respectively the transfer

functions of the inner and outer controllers, which are

parameterized by ρ1 ∈ Rn1 and ρ2 ∈ Rn2. The signals r1(t)
and r2(t) are the references of the inner and outer system,

r2(t) is assumed to be quasi-stationary and uncorrelated with

the noises, that is Ē [r2(t)e1(s)] = 0 and Ē [r2(t)e2(s)] =
0 ∀t, s.

Fig. 1. Cascade system.

The system in closed loop becomes

y2(t, ρ1, ρ1) = T2(q, ρ1, ρ2)r2(t) + S2(q, ρ1, ρ2)v2(t)

+S1(q, ρ1, ρ2)v1(t) (11)

y1(t, ρ1, ρ2) = T1(q, ρ1, ρ2)(r2(t)− v2(t))

+
S1(q, ρ1, ρ2)

G2(q)
v1(t) (12)

where

Ti(q, ρ1) =
y1

r1
=

C1(q, ρ1)G1(q)

1 + C1(q, ρ1)G1(q)

T2(q, ρ1, ρ2) =
y2

r2
=

C2(q, ρ2)Ti(q, ρ1)G2(q)

1 + C2(q, ρ2)Ti(q, ρ1)G2(q)

T1(q, ρ1, ρ2) =
y1

r2
=

T2(q, ρ1, ρ2)

G2(q)

and

S2(q, ρ1, ρ2) =
y2

v2
= 1− T2(q, ρ1, ρ2)

S1(q, ρ1, ρ2) = G2(q)S2(q, ρ1, ρ2)(1 − Ti(q, ρ1)).

IFT can be directly used to tune cascade systems, by

tuning each loop separately. The inner loop is firstly adjusted

tuning ρ1, using two experiments for each iteration, until the

algorithm converges to a good inner performance. The outer

loop is then adjusted tuning ρ2, using also data from two

experiments at each iteration. So, a typical cascade adjust

uses twice as much experiments than a non-cascade adjust.

In this article we describes an extension of the Iterative

Feedback Tuning method that adjust both controllers (inner

and outer) at the same time.

IV. CASCADE ITERATIVE FEEDBACK TUNING

The proposed Cascade Iterative Feedback Tuning is an

iterative method which solves the following optimisation

problem

min
ρ1,ρ2

J(ρ1, ρ2) (13)

where the objective function J(ρ1, ρ2) depends on both

controller parameters ρ1 and ρ2 and is defined as

J(ρ1, ρ2) =
1

N

N∑

t=1

(y2(t, ρ1, ρ2)− yd(t))
2. (14)

The desired output yd(t) is defined as

yd(t) = Td(q)r2(t)

where Td(q) is a desired transfer function from the outer

loop reference to the output.

The output signal y2(t, ρ1, ρ2) depends on the parameters

ρ1 and ρ2. To simplify the notation, we will consider that

ρ =

[
ρ1
ρ2

]
∇J(ρ) =

[
∂J
∂ρ1

∂J
∂ρ2

]
. (15)

The gradients can be written as

∂J

∂ρ1
=

2

N

N∑

t=1

(y2(t, ρ)− yd(t))
∂y2

∂ρ1
(16)

∂J

∂ρ2
=

2

N

N∑

t=1

(y2(t, ρ)− yd(t))
∂y2

∂ρ2
(17)

which depend on the partial derivative of y2(t) with relation

to ρ1 and ρ2.

In the following equations we will drop dependence on q

and ρ to save space. Observe that

∂y2

∂ρ1
=

∂

∂ρ1
(T2r2(t) + S2v2(t) + S1v1(t))

so that, after computing the derivatives, it follows that

∂y2

∂ρ1
=

∇C1

C1

{
T2(r2(t)− y2(t)) (18)

−
T1

C2
(y2(t)− v2(t))

}
.

Also, the gradient with relation to ρ2 is given by

∂y2

∂ρ2
=

∂

∂ρ2
(T2r2(t) + S2v2(t) + S1v1(t))

such that

∂y2

∂ρ2
=

∇C2

C2
{T2(r2(t)− y2(t))}. (19)

In order to compute the gradient (15) one need to compute

(16)-(17) using equations (18) and (19). However, the signals

y2(t),
∂y2

∂ρ1

and ∂y2

∂ρ1

depend on the model of the process which

is unknown. So, in the sequence we will establish a method to

estimate the gradient of the criterion using only input/output

data collected from closed-loop experiments.



The estimates will be computed using data from three

specific experiments, the superscript means that the data is

collected at that experiment:

• First Experiment:

The reference signal is r2(t) = r1(t) and we collect

y11(t) and y12(t). Observe that

y11(t) = T1r
1(t) +

S1

G2
v11(t)− T1v

1
2(t)

y12(t) = T2r
1(t) + S1v

1
1(t) + S2v

1
2(t).

• Second experiment:

The reference signal is (r1(t)− y12(t)) (the error of the

collected signals in the first experiment) and we again

collect y21(t) and y22(t). Observe that

y21(t) = T1(r
1 − y12) +

S1

G2
v21(t)− T1v

2
2(t)

y22(t) = T2(r
1 − y12) + S1v

2
1(t) + S2v

2
2(t).

• Third experiment:

The reference signal is again r1(t) and we again collect

y31(t) and y32(t). Observe that

y31(t) = T1r
1(t) +

S1

G2
v31(t)− T1v

3
2(t)

y32(t) = T2r
1(t) + S1v

3
1(t) + S2v

3
2(t).

Three signals y11(t), y21(t) and y22(t) are then used to

estimate the gradient, using the following formulas:

∂̂y2

∂ρ1
=

∇C1

C1

[
y22(t)−

1

C2
(y11(t)− y21(t))

]
(20)

∂̂y2

∂ρ2
=

∇C2

C2

[
y22(t)

]
. (21)

These estimates are computed using only input/output data

from the process and they are exactly the correct gradients

when there is no noise, as we can observe in the following

equations.

∂̂y2

∂ρ1
=

∂y2

∂ρ1
+

∇C1

C1

{
S2v

2
2(t) + S1v

2
1(t)

}

−
∇C1

C1

1

C2

{
S1

G2
(v11 − v21) + T1v

2
2

}

∂̂y2

∂ρ2
=

∂y2

∂ρ2
+

∇C2

C2

{
S2v

2
2(t) + S1v

2
1(t)

}

Notice that the estimate
∂̂y2

∂ρ1

is corrupted by noise that

comes from the two experiments v11(t), v12(t), v21(t) and

v22(t). However, the estimate ∂̂y2

∂ρ2

is corrupted by noise only

from the second experiment v21(t) and v22(t).
The data from the third experiment is only used to compute

the gradient of the criterion, using the formula

∇̂J(ρi) =
2

N

N∑

t=1

(
yd(t)− y32(t, ρ)

) ∂̂y(t)

∂ρ
.

Observe that the term
(
yd(t)− y32(t, ρ)

)
contains noise

only from the third experiment, while
∂̂y(t)
∂ρ

contains noise

from the first and second experiments. Since the noise from

an experiment is uncorrelated with the noise of another

experiment, we can show that

E
[
∇̂J(ρi)

]
= ∇J(ρi).

The matrix Ri is computed as

Ri =


 2

N

N∑

t=1

∂̂y2

∂ρ

T
∂̂y2

∂ρ




−1

V. NUMERICAL EXAMPLE

The aim of this section is to illustrate the Cascade Iterative

Feedback Tuning where this method is compared to the

conventional method.

The process is defined as

G1(q) =
1

q − 0.8
G2(q) =

1

q − 0.9

and there is noise in both systems loops conform (12) and

(11), being v1(t) and v2(t) Gaussian noises with zero mean

and variance of 10−4.

The controllers C1(q, ρ1) and C2(q, ρ2) are both PIs

(Proportional-Integral). This kind of cascade PI controllers

widely used in practical situations involving cascade control

[13] [14]. Each PI controller is parameterized as

C(q, ρ) = ρTC(q) (22)

where ρ and C(q) are defined as

ρ =

[
kp
ki

]
C(q) =

[
1
q

q−1

]
. (23)

The reference model was chosen as

Td(q) =
0.016q2 − 0.0246q+ 0.00923

q4 − 3.5q3 + 4.626q2 − 2.738q + 0.6122

such that it can be exactly achieved by the controllers

Cd1(q) =

[
0.2
0.07

]T [
1
1

q−1

]
(24)

Cd2(q) =

[
0.08
0.009

]T [
1
1

q−1

]
. (25)

in a noise free environment. Since the level of the noise

affecting the data is low, we expect that the controllers related

to global minimum of J(ρ) be close to Cd1(q) and Cd2(q).
The process is initially controlled by the PI controllers

given by

C1(q) =

[
0.1
0.05

]T [
1
1

q−1

]
(26)

C2(q) =

[
0.05
0.004

]T [
1
1

q−1

]
. (27)

Figure 2 shows the output of the outer loop y2(t) obtained

with the initial controllers (26)-(27) and a square wave



as reference (r2(t)), with unitary amplitude and 2 seconds

period as

r2(t) = square

(
2πt

2

)
. (28)
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Fig. 2. System response y2(t) with controllers (26)-(27) (continuous line);
desired response yd(t) (dashed line).

A. Quasi-Newton Algorithm

The Steepest Descent Algorithm (matrix Ri(t) as identity)

usually has a large region of attraction, but it tends to

provide low convergence rates. On the other hand, the Quasi-

Newton algorithm with matrix Ri(t) as (6) usually has

fast convergence rate and small region of attraction [15].

Therefore, we suggest the use of Steepest Descent in the first

iterations and then the Quasi-Newton algorithm, in order to

boost the convergence rate without losing the large domain of

attraction. The used step size sequence for Steepest Descent

and Quasi-Newton algorithm were chosen as

Steepest Descent : γi =
µ

‖∇J‖
(29)

Quasi-Newton : γi =
i

L
(30)

where µ is a constant with 0.001 value and L is the maximum

iterations number.

B. Conventional Methodology

We used the conventional tuning to cascade controllers,

where the tuning is carried out in stages. In the first stage

the inner loop is adjusted tuning C1(q, ρ1). This stage is

very difficult for the user, because there is no closed loop

specification for the inner loop response. In the second stage,

the outer loop is adjusted tuning the C2(q, ρ2).
The IFT algorithm is executed in the inner loop with

reference signal defined as (28). The Td(t) is chosen as an

unitary transfer function, in other words the secondary loop

is design to be as fast as possible. Table I show the controller

parameters convergence of C1(q, ρ1). At the end of controller

tuning, we obtain as a result the PI controller given by

C1(q, ρ1) =

[
0.9950
0.1992

]T [
1
1

q−1

]
(31)

Table II show the controller parameters convergence of

C2(q, ρ2). At the end of the outer loop tuning, we obtain as

a result the PI controller given by

C2(q, ρ2) =

[
0.0578
0.0099

]T [
1
1

q−1

]
(32)

TABLE I

INNER LOOP IFT RESULTS.

int
C1(q) Rikp kd

1 0.1000 0.0500 Identity
2 0.1006 0.0508 Identity
3 0.1012 0.0516 Identity
4 0.1018 0.0524 Identity
5 0.1024 0.0532 Identity
6 0.1030 0.0540 Hessian
7 0.1054 0.0541 Hessian
8 0.1104 0.0545 Hessian
9 0.1180 0.0550 Hessian
10 0.1281 0.0557 Hessian
20 0.4507 0.0826 Hessian
30 0.9282 0.1694 Hessian
40 0.9950 0.1992 Hessian

TABLE II

OUTER LOOP IFT RESULTS.

int J
C2(q) Rikp kd

1 0.1063 0.0500 0.0040 Identity
2 0.0629 0.0500 0.0050 Identity
3 0.0356 0.0500 0.0060 Identity
4 0.0189 0.0501 0.0070 Identity
5 0.0098 0.0501 0.0080 Identity
6 0.0052 0.0501 0.0090 Hessian
7 0.0053 0.0502 0.0090 Hessian
8 0.0051 0.0504 0.0090 Hessian
9 0.0051 0.0507 0.0090 Hessian

10 0.0050 0.0511 0.0091 Hessian
20 0.0038 0.0561 0.0096 Hessian
30 0.0036 0.0579 0.0098 Hessian
40 0.0036 0.0578 0.0099 Hessian

C. Proposed Methodology

We tune both inner and outer loop controllers at same

time using the proposed Cascade Iterative Feedback Tuning.

The controller parameters convergence of C1(q, ρ1) and

C2(q, ρ2), with their cost can be shown in Table III.

After 40 iterations the Cascade IFT achieves the control-

lers

C1(q, ρ1) =

[
0.1986
0.0691

]T [
1
1

q−1

]

C2(q, ρ2) =

[
0.0797
0.0090

]T [
1
1

q−1

]
.

Comparing Tables II and III we can observe that the propo-

sed approach achieved a much better performance that can be

measured by J(ρ). The proposed Cascade Iterative Feedback

Tuning cost is 9 times smaller than the conventional method

that tune the inner and outer loops separately. Figure 3 shows

the convergence of the parameters which were initialised

with controller parameters ρ1 =
[

0.1 0.05
]

and ρ2 =[
0.05 0.004

]T
. After 40 iterations the algorithm is very

close to the minimum of the criterion, but after 20 iterations

the method had already obtained a very good performance

and could be stopped there, without the need of the final

iterations. After 8 iterations the proposed method already

found a smaller cost than the conventional method.



TABLE III

CASCADE IFT RESULTS.

int J
C1(q) C2(q) Rikp kd kp kd

1 0.1071 0.1000 0.0500 0.0500 0.0040 Identity
2 0.0651 0.1000 0.0500 0.0500 0.0050 Identity
3 0.0401 0.1000 0.0500 0.0501 0.0060 Identity
4 0.0284 0.1000 0.0501 0.0502 0.0070 Identity
5 0.0246 0.1000 0.0502 0.0503 0.0080 Identity
6 0.0240 0.1000 0.0509 0.0511 0.0078 Hessian
7 0.0042 0.1046 0.0533 0.0777 0.0081 Hessian
8 0.0023 0.1123 0.0574 0.0826 0.0084 Hessian
9 0.0016 0.1206 0.0657 0.0773 0.0087 Hessian

10 0.0013 0.1257 0.0698 0.0766 0.0087 Hessian
20 0.0004 0.1912 0.0714 0.0789 0.0090 Hessian
30 0.0004 0.1971 0.0693 0.0792 0.0090 Hessian
40 0.0004 0.1986 0.0691 0.0797 0.0090 Hessian
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Fig. 3. Parameter convergence of controllers C1(q, ρ1) and C2(q, ρ2)
with Cascade IFT algorithm.

The closed loop response y2(t) for the two methodologies

are shown in Figure 4.

VI. CONCLUSION

We have presented an extension of IFT for the tuning

of cascaded controllers. The resulting procedure requires

three experiments at each iteration and is based only on

the performance specified for the outer loop. It is thus very

advantageous when compared to the separate application of

IFT to each one of the two controllers. Indeed, separate

application of IFT to each controller in the cascade would

require more experiments per iteration (two experiments for

each controller) and additional work for the designer (the

choice of an extra reference model for the inner loop).

Moreover, and perhaps most importantly, our cascade IFT

converges to the optimal performance of the outer loop,

whereas in the standard IFT this would require the designer
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Fig. 4. Output y2(t) obtained with differents IFTs methodologies.

to chose the best reference model for the inner loop - an

unlikely occurrence, as it is hard to think of a guideline for

that.

Our immediate need for an automatic tuning and adapta-

tion procedure for cascade controllers came from the design

of controllers for quadrotors, so current research is focused

on the application of the above methodology to the attitude

control of a quadrotor.
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