
Pitch and Roll control of a Quadcopter

using Cascade Iterative Feedback Tuning

Douglas A. Tesch ∗ Diego Eckhard ∗

William Cechin Guarienti ∗

∗ Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil,
(e-mail: douglasatesch@gmail.com, diegoeck@ufrgs.br,

williamguarienti@gmail.com)

Abstract: Quadcopter is a type of Unmanned Aerial Vehicle which is lifted and propelled
by four rotors. The vehicle has a complex non-linear dynamic which makes the tuning of
the roll and pitch controllers difficult. Usually the control design is based on a mathematical
model which is strongly related to physical components of vehicle: mass, moment of inertia and
aerodynamic. When a tool is attached to the vehicle, a new model must be computed to redesign
the controllers. In this article we will adjust the controllers of a real experimental quadcopter
using the Cascade Iterative Feedback Tuning method. The method is data-driven, so it does not
uses a model for the vehicle; all it uses is input-output data collect from the closed-loop system.
The method minimizes the H2 error between the desired response and the actual response
of the vehicle angle using the Newton-Raphson algorithm. The method achieves the desired
performance without the need of the vehicle model, with low cost and low complexity.

Keywords: UAVs Applications

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) popularity has grow up
in the last two decades. Increasing research in many areas
like power-electronics, sensing, micro-controllers, naviga-
tion and power supply has reduced the cost of UAVs and
improved the safety for commercial and military applica-
tions, see (Puri, 2005). In commercial context, there are
applications as: supervision of cracks in buildings facades,
supervision of high voltage towers, privileged aerial image,
topography and plantation monitoring. In military context
there are applications as in: fire monitoring, border patrol
and aerial monitoring.

Multirotors are UAVs that have low cost and simple
construction, what explain the large use in commercial
applications and the choice of this research work. There
are many multirotors structures with different number of
rotors; the most common have 4, 6 and 8 rotors. In this
work we choose the most used multirotor structure: it has
4 rotors and it is called quadcopter.

The quadcopter has 6 degrees of freedom (6DOF), it can
move in the 3 directions of space: x, y an z with respective
linear velocities U , V and W . It can also rotate around
the three axis with angles: roll φ, pitch θ and yaw ψ with
respective angular velocities P , Q an R.

This complex non-linear system has been the focus of
several control researches as in (Bouabdallah et al., 2004),
(Madani and Benallegue, 2006) and (Coza and Macnab,
2006). Although the literature describes all these complex

⋆ This work was supported by Coordenação de Aperfeiçoamento
de Pessoal de Nı́vel Superior (CAPES), CNPq/Brasil, UFRGS and
FAPERGS.

non-linear control algorithms, the most common control
structure used for pitch and roll control of quadcopters
is the classical linear PID control in cascade format,
where there are an inner control loop responsible for
angular velocities P (t) and Q(t) and an outer control
loop, responsible for the angles φ(t) and θ(t), as in Kada
and Ghazzawi (2011); Inovan et al. (2014); Mahony et al.
(2012); Patel and Barve (2014). The tuning of the PID
parameters usually is done using a model of the process,
obtained from physical quantities as: mass, size, inertial
moment, etc. When the structure of the vehicle changes,
for example when a camera is coupled, the system changes
and also the model that represents the system. In this
case, a new set of parameters for the PID controllers must
be calculated, in order to ensure proper operation of the
vehicle.

In this work, we propose the use of data-driven techniques
to design the controllers of a real and commercial UAV in a
practical way. Data-driven methods do not use a model to
adjust the controller parameters. Instead, the methods use
only sets of input-output data collected from the system.
The most used methods are: Iterative Feedback Tuning
(IFT) (Hjalmarsson et al., 1998) and Virtual Reference
Feedback Tuning (VRFT) (Campi et al., 2002)(Bazanella
et al., 2012). Since the controller are implemented in
cascade, we propose the use of the Cascade Iterative
Feedback Tuning (CIFT), an extension of IFT recently
published in (Tesch et al., 2016).

The article is organized as follows. Section 2 describes
the quadcopter used in this work. Section 3 describes the
cascade structure of the controllers. The Cascade Iterative
Feedback Tuning is presented in Section 4. Section 5
presents the methodology used to adjust the controller

parameters including how to perform the experiments and
to validate the controllers. The results are shown in Section
6 and Section 7 concludes the work.

2. THE QUADCOPTER

The quadcopter used in this work has six degrees of
freedom, with variables x(t), y(t), z(t), U(t), V (t), W (t),
φ(t), θ(t), ψ(t), P (t), Q(t) and R(t) represented in Fig. 1.
It is composed by several parts which are listed in Table 1
with their respective weight. The total weight of the UAV
is 995g.

Fig. 1. Quadcopter states representation. Hartman et al.
(2004).

Table 1. Quadcopter components and weight.

Component Weight

Frame 272g
Motors 228g

Propellers 168g
Control Board 14g

Battery 187g
ESCs 76g
Others 50g

Sum 995g

The rotors (motors + propellers) were chosen such that the
total thrust should be two times the weight. The motors
are 2826 1100kv model from NTM Prop Drive and the
propellers are 8 × 4.5, this propeller have 8” of size and
4.5” of step. Each rotor produces a maximal thrust force
of 5.2214N totalising 20.8844N , a little more than double
of the weight.

The frame is the popular commercial model F450, largely
used by aeromodel amateurs. The control board has a 8
bits micro-controller ATMega328p which runs at 16Mhz.
The inertial measurement unit (IMU) uses a gyroscope
ITG3200 and accelerometer BMA180. The board uses a
data fusion algorithm to estimate the angular velocities
P (t), Q(t) and R(t) and the angles φ(t), θ(t), ψ(t). The
Electronic Speed Control (ESC) are electronic devices
that are responsibility for power supply the brushless
motors, the model is SkyWalker-20A of the manufacture
Hobbywing. The battery used is a lithium-ion polymer
(LiPo) with capacity 2200mAh.

The objective of this work is to adjust the roll and pitch
PID controllers of the UAV using data-driven control
methods. In order to run the experiments and collect the
sets of data, a platform was used to restrict the movement
of the UAV in some directions. This platform is presented

in Fig. 2 where the only allowed movement is in the roll
angle. In order to increase the angle, the quadcopter should
increase the speed of motor 2 and reduce the speed of
motor 4.

Fig. 2. The platform of tests.

3. PITCH AND ROLL CONTROL

The main objective of this work is to design PID con-
trollers for pitch and roll angles. Since the UAV is sym-
metric, we will only present the design for the roll angle
φ(t), but the same strategy may be used to design the pitch
controllers. The roll control systems structure is composed
by two controllers, as we can see in Fig. 3.

Fig. 3. Roll control system structure.

The IMU provides both angle φ(t) and angular velocity
P (t) for the control system. The angular velocity P (t) is
computed directly from the gyroscope while the angle φ(t)
is estimated using a sensor-fusion technique that combines
information from the gyroscope and accelerometer named
complementary filter. To more detail about data-fusion
technique employed in quadcopter, we indicate the fol-
lowing research (Salton et al., 2016). This two quantities
(φ(t) and P (t)) are used in a cascade control structure
composed by controllers C1(z) and C2(z). Controller C1(z)
is responsible for controlling the angular velocity P (t)
while controller C2(z) is responsible for the angle φ(t).
The reference r2(t) is the reference angle for the system,
and usually is chosen by the pilot. The output of controller
2 (u2(t)) is the reference for the inner control loop, while
the output of controller 1 (u1(t)) is the differential velocity
applied to the motors. The relation between the outputs
can be written as

u2(t) =C2(z)(r2(t)− φ(t)) (1)

u1(t) =C1(z)(u2(t)− P (t)), (2)

where z is the forward-time operator z(x(t)) = x(t+ 1).

Usually both controllers C1(z) and C2(z) are discrete-time
single-input-output PID controller, which can be written
as

C1(z, ρ1) = ρT1 C1(z) (3)

C2(z, ρ2) = ρT2 C2(z), (4)

where the parameter ρ1 and ρ2 are a vectors containing
the gains kp, ki and kd and C1(z) and C2(z) are vector of
transfer functions. Using this structure the PID controllers
can be written as:

C1(z, ρ1 = [kp,1 ki,1 kd,1]

1
z

z − 1
z − 1

z

 , (5)

C2(z, ρ2) = [kp,2 ki,2 kd,2]

1
z

z − 1
z − 1

z

 , (6)

where

ρ1 =

[
kp,1
ki,1
kd,1

]
, ρ2 =

[
kp,2
ki,2
kd,2

]
, C1(z) = C2(z) =

1
z

z − 1
z − 1

z

 .

4. CASCADE ITERATIVE FEEDBACK TUNING

The data-driven method used in this work is an extension
of the classical IFT (Hjalmarsson et al., 1994) for cas-
cade systems, named Cascade Iterative Feedback Tuning
(CIFT) (Tesch et al., 2016). The CIFT is an iterative
method for tuning the controllers of a cascade system with
two loops without the use of any previous knowledge of
the system model. The method uses only input and output
measured signals in an iterative way for finding the optimal
controllers in a H2 sense. The cost function minimised by
the method is given by

J(ρ1, ρ2) =‖yd(t)− y2(t, ρ1, ρ2)‖
2

=
1

N

N∑

t=1

(yd(t)− y2(t, ρ1, ρ2))
2
. (7)

where ρ1 and ρ2 are the parameter vectors of the con-
trollers, y2(t, ρ1, ρ2) is the output of the system and yd(t)
is the desired output response of the system for some
reference signal and N is the number of samples used in
the experiment. Therefore, the algorithm CIFT performs
a minimization in the cost function J(ρ1, ρ2) for finding
the parameter vectors ρ1 and ρ2 that makes the output of
the system y2(t, ρ1, ρ2) the closest possible to the desired
response yd(t).

The CIFT method was design specifically to deal with
two problems of the classical IFT algorithm when used in
cascade structures. First, the CIFT adjust both controllers
C1(z) and C2(z) at once, avoiding the need of tuning them
separately which would use the double of experiments.
Second, the method uses the same cost function to tune
both controllers (J(ρ1, ρ2)) and it therefore achieve an

optimum controller, while if each controller was sequen-
tially tuned only a sub-optimal solution would be found.
In the sequence we describe how the method uses input-
output data from the process to optimise the cost function
J(ρ1, ρ2).

4.1 The Method

The CIFT was developed for a system in a cascade format
conform demonstrated in Fig. 4 where G1(z) and G2(z)
are the unknown transfer functions of the inner and outer
loops, C1(z) and C2(z) are the discrete linear and time
invariant controllers, y1(t) and y2(t) are the inner and
outer output responses, v1(t) and v2(t) are the zero mean
white noises that corrupt the inner and outer loops, u1(t)
and u2(t) are the control signals of both loops and r1(t)
and r2(t) are the reference signal for the respective control
loops.

Fig. 4. Example of a system in cascade format.

The CIFT uses the same performance criterion from the
classical IFT (the norm H2), but the cost function for
the CIFT now depends on two parameters ρ1 and ρ2
(controllers C1(z) and C2(z)). The cost function for the
CIFT algorithm is given by equation (7). Usually the
desired response for the system yd(t) is computed using
a desired transfer Td(z):

yd(t) = Td(z)r2(t). (8)

such that this transfer function describes the desired
relation between the reference signal r2(t) and the desired
output yd(t). It is common to choose a first or second
order transfer function for Td(z) where Td(1) = 1 such that
the closed-loop system presents null steady-state error for
constant references.

The CIFT method minimizes the cost function J(ρ1, ρ2)
using iterative algorithms based on the gradient of the cost
function. The most used algorithm is the Newton-Raphson
described as

ρi+1 = ρi − Ĥ(ρi)−1∇̂J(ρi). (9)

where

ρ =

[
ρ1
ρ2

]
,

i is the iteration number, ∇̂J(ρi) is an estimate of the

cost function gradient and Ĥ(ρi) is an estimate of the cost
function Hessian matrix. This algorithm is known for the
fast convergence to the minimum of the criterion, when
initialized close to the minimum. Since the cost function
J(ρ1, ρ2) is not convex, it may occur that the algorithm do
not find the minimum, but this topic will not be covered
in this article. A profound convergence analysis of the
Newton-Raphson algoritm in data-driven control can be
found in the book (Bazanella et al., 2012) which describes
the algorithm and several tools to improve its convergence.

In order to use the Newton-Raphson algorithm, the user
must estimate the cost function gradient and Hessian
matrix, and the CIFT method describes a methodology
to estimate these quantities which only uses input-output
closed-loop data from the systems, without the need of
a process model. In the sequence we describe the three
experiments that need to be run in order to collect the
input-output data, and how to estimate the cost function
gradient and Hessian.

4.2 CIFT algorithm

The CIFT is an iterative method that can use the
Newton-Raphson algorithm to minimize the cost function
J(ρ1, ρ2). The cost function gradient and Hessian matrix
are estimated only using collect data from 3 closed-loop
experiments. At each iteration the following steps must be
executed:

• Excite the system in closed loop with r2(t) = r1(t)
and collect both outputs y1(t) and y2(t) named y11(t)
and y12(t) respectively.

• Calculate the error of this experiment as: r22(t) =
r1(t)− y12(t).

• In a second experiment, excite the process in closed-
loop with the computed reference r22(t). Collect again
the both outputs and name them y21 e y22 respectively.

• Run a third experiment with the same reference of
the first, in other words, r2(t) = r1(t). Collect the
output sinal of the outer loop and name it y32(t).

• Use the data collected to compute the following
estimates

∂̂y2(t)

∂ρ1
=

1

C1

∂C1

∂ρ1

[
y22(t)−

1

C2

(
y11(t)− y21(t)

)]
(10)

∂̂y2(t)

∂ρ2
=

1

C2

∂C2

∂ρ2

[
y22(t)

]
(11)

∂̂y2(t)

∂ρ
=

 ∂̂y2(t)

∂ρ1

T
∂̂y2(t)

T

∂ρ2

T

. (12)

• Estimate the cost function gradient:

∇̂J(ρi) =
2

N

N∑

t=1

[yd(t)− y32(t)]
̂∂y2(t)
∂ρ

• Estimate the cost function Hessian:

Ĥ(ρi) =
2

N

N∑

t=1

∂ŷ2(t)

∂ρ

∂ŷ2(t)

∂ρ

T

(13)

• Compute the new controller parameters using the
Newton-Raphson algorithm:

ρi+1 = ρi − Ĥ(ρi)−1∇̂J(ρi). (14)

After each iteration a new set of controller parameters (ρ1
and ρ2) is obtained. If the closed-loop response is not satis-
factory, the user must run another iteration of the method
to compute a better solution to the optimisation problem.
The procedure can be repeated until a satisfactory solution
is obtained.

5. QUADCOPTER CONTROLLER TUNING
METHODOLOGY

This section has as objective to describe the methodology
used to tuning the controllers of a real quadcopter using
CIFT. The proposed methodology guides the designer to
improve the performance of the quadcopter and reduce the
time spent tuning the quadcopter controller.

The methodology is simple and practical to be used. It
is simple because it only needs input-output data from
experiments and do not need advanced knowledge of
control for tuning the algorithm. The user just defines the
desired response that he desires. It is practical because
achieves good performance with little time spent. The
proposed quadcopter controller tuning methodology is the
following:

(1) Fly: In a normal operational condition, do a free
fly with a stable controller and be aware to any
undesirable performance.

(2) Bad Performance or New Device: If it is observed
that the performance is not good enough for the
application, it is recommended to stop the flight
and to proceed the controller tuning. Also, when a
new device is attached to the quadcopter (a camera
for example), the quadcopter dynamics will change,
and we also recommended to proceed the controller
tuning.

(3) CIFT Controller Tuning: To realize the controller
tuning the user must hold the quadcopter conform
the platform in Fig 2. The platform used in the
experiments is simple and low cost. Also, the user
can improvise one, for example, hanging the vehicle
between two trees. The user must choose a desired
response and run the three experiments to improve
the performance of the control. If the achieved per-
formance is not satisfactory, another iteration should
be performed using more three experiments.

(4) Test the New Controllers: Again, in a normal
operational condition, execute a free fly with the
quadcopter and verify if the performance is satisfac-
tory. In case the of unacceptable performance, stop
the fly and go back toCIFT Controller Tuning. At
this point, it may be necessary to use a more complex
controller structure. This procedure can be repeated
until the desired performance is reached.

6. RESULTS

In this section, the application of the proposed method-
ology to a real quadcopter is described. The quadcopter
has a cascade structure of control, therefore the algorithm
will tune both inner and outer controllers concomitantly.
Initially two proportional controllers were used for the
inner and outer loops:

C1(z, ρ1) = ρ1 = kp,1
C2(z, ρ2) = ρ2 = kp,2 (15)

such that
∂C1

∂ρ1
= 1 (16)

∂C2

∂ρ2
= 1 (17)

since the controllers are proportional and ρ1 = kp,1,
ρ2 = kp,2. The sample time of the controller is 10ms such
that the signals are sampled 100 times each second.

The reference signal is a sine with period of 5 seconds (500
samples). This reference signal is smooth and can represent
the kind of references a pilot choose to guide the vehicle.

r2(t) = 20sin

(
2πt

5

)
(18)

This signal will be applied to the vehicle during 30 seconds
(3000 samples).

We choose a second order reference model with unit
steady-state gain:

Td(z) =
(1− 0.94)2z

(z − 0.94)2
.

This reference model is used to compute the desired
reference signal:

yd(t) =
(1 − 0.94)2z

(z − 0.94)2
r2(t).

The reference signal and the desired output can be viewed
in Fig 5.

0 500 1000 1500 2000 2500 3000

−20

−10

0

10

20

samples

r(t)
y

d
(t)

Fig. 5. Reference signal (blue) and desired output response
(red).

Initially the system was using the following controllers:

C1(z, ρ1) = 0.1000

C2(z, ρ2) = 1.0000 (19)

which render a bad performance as we can see in Fig. 6.

0 500 1000 1500 2000 2500 3000

−20

−10

0

10

20

samples

r(t)
y

d
(t)

φ(t)

Fig. 6. Reference signal (blue), desired output response
(red) and actual roll angle (black) at first experiment
of first iteration.

The quality of these controllers can be measured with the
root mean square error:

JRMS =

√√√√ 1

3000

3000∑

i=1

(yd(t)− φ(t))
2

Table 2. Cost function and parameters at each
iteration

Iteration JRMS C1(z) C2(z)

1 11.054 0.1000 1.0000
2 7.834 0.1005 1.5039
3 5.298 0.1011 2.2472
4 3.021 0.1014 3.1623
5 1.855 0.1017 3.9936
6 1.162 0.1018 4.6963
7 0.975 0.1020 5.0329
8 0.972 0.1019 4.9806

Using the initial controller the error was computed as
JRMS = 11.054 degrees which is pretty large.

The Cascate Iterative Feedback Tuning method was then
applied to the vehicle to improve the performance of the
controllers. At each iteration, three experiments are used.
The output of the second experiments for the first iteration
can be seen in Fig 7. We can see that the second exper-
iment is similar to the first and third experiments. The
third experiment is pretty close to the first experiment.

0 500 1000 1500 2000 2500 3000
−30

−20

−10

0

10

20

30

samples

r(t)

φ(t)

Fig. 7. Reference signal (blue) and actual roll angle (black)
at second experiment of first iteration.

Eight iterations of the method were performed, where each
iteration used three experiments, totalising 24 experiments
of 30 seconds each. The total time to tune the controllers
is about 15 minutes. The obtained controllers at each
iteration can be seen in Table 2 together with the obtained
cost value. After 8 iterations the cost was reduced from
11.054 degrees to 0.972 degrees.

The controllers at the eight iteration are

C1(z, ρ1) = 0.1019

C2(z, ρ2) = 4.9806 (20)

which render a really good performance, as we can also
see in Fig 8. In this figure, the desired response is hidden
behind the obtained response for the roll angle.

As the response was really satisfactory, there is no need to
implement more complex controllers as PD or PID. The
proportional controllers are enough to achieve the desired
response.

7. CONCLUSION

This article described the use of Cascade Iterative Feed-
back Tuning to adjust the pitch and roll controllers of
a quadcopter. The CIFT is a data-driven method that
does not use a model of the process to tune the con-
trollers. All the needed information comes from closed-
loop data collected from the vehicle. The method uses

0 500 1000 1500 2000 2500 3000

−20

−10

0

10

20

samples

r(t)
y

d
(t)

φ(t)

Fig. 8. Reference signal (blue), desired output response
(red) and actual roll angle (black) at first experiment
of 8th iteration.

the Newton-Raphson algorithm to minimise an H2 cost
function. The only parameter the user need to specify is
the desired output response for the closed-loop system.
The method was applied to a real quadcopter attaining
really good performance. The mean error was reduced from
11.054 degrees to 0.972 degrees using only proportional
controllers. The method is suitable for tuning controllers
of quadcopters, achieving the desired performance with
low cost and without the need of complex models.

REFERENCES

Bazanella, A.S., Campestrini, L., and Eckhard, D. (2012).
Data-driven Controller Design: The H2 Approach.
Springer, Netherlands. doi:10.1007/978-94-007-2300-9.

Bouabdallah, S., Noth, A., and Siegwart, R. (2004).
Pid vs lq control techniques applied to an indoor
micro quadrotor. In Intelligent Robots and Systems
(IROS), IEEE/RSJ International Conference on, vol-
ume 3, 2451–2456. IEEE, New York.

Campi, M.C., Lecchini, A., and Savaresi, S.M. (2002).
Virtual reference feedback tuning: a direct method for
the design of feedback controllers. Automatica, 38(8),
1337–1346.

Coza, C. and Macnab, C. (2006). A new robust adaptive-
fuzzy control method applied to quadrotor helicopter
stabilization. In Fuzzy Information Processing Society
(NAFIPS), Annual meeting of the North American,
454–458. IEEE, New York.

Hartman, D., Landis, K., Mehrer, M., Moreno, S., and
Kim, J. (2004). Quadcopter dynamic modeling and
simulation. In: freeware project presented at ”2014
MATLAB and Simulink Student Design Challenge”.

Hjalmarsson, H., Gevers, M., Gunnarsson, S., and Lequin,
O. (1998). Iterative feedback tuning: theory and appli-
cations. IEEE control systems magazine, 18(4), 26–41.

Hjalmarsson, H., Gunnarsson, S., and Gevers, M. (1994).
A convergent iterative restricted complexity control
design scheme. In Proc. 33rd Conference on Decision
and Control, 1735–1740. New York: IEEE, Lake Buena
Vista, Fl, USA.

Inovan, R., Ataka, A., Tnunay, H., Abdurrahman, M.Q.,
Cahyadi, A., and Yamamoto, Y. (2014). A cascade
controller for linearized quadrotor model. In Advanced
Robotics and Intelligent Systems (ARIS), 2014 Interna-
tional Conference on, 161–164. IEEE.

Kada, B. and Ghazzawi, Y. (2011). Robust pid controller
design for an uav flight control system. In Proceedings
of the World Congress on Engineering and Computer
Science, volume 2, 19–21.

Madani, T. and Benallegue, A. (2006). Backstepping
control for a quadrotor helicopter. In Intelligent Robots
and Systems (RSJ), International Conference on, 3255–
3260. IEEE, New York.

Mahony, R., Kumar, V., and Corke, P. (2012). Multirotor
aerial vehicles: Modeling, estimation, and control of
quadrotor. IEEE robotics & automation magazine,
19(3), 20–32.

Patel, K. and Barve, J. (2014). Modeling, simulation and
control study for the quad-copter uav. In 2014 9th
International Conference on Industrial and Information
Systems (ICIIS), 1–6. IEEE.

Puri, A. (2005). A survey of unmanned aerial vehicles
(uav) for traffic surveillance. Department of computer
science and engineering, University of South Florida.

Salton, A.T., Eckhard, D., Flores, J.V., Fernandes, G., and
Azevedo, G. (2016). Disturbance observer and nonlinear
damping control for fast tracking quadrotor vehicles. In
IEEE Multi-Conference on Systems and Control. IEEE,
Buenos Aires.

Tesch, D., Eckhard, D., and Bazanella, A.S. (2016). Iter-
ative feedback tuning for cascade systems. In European
Control Conference. Denmark.

